AQA Maths Further Pure 2 Mark Scheme Pack 2006-2015

$A Q A$

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6360

MFP2 Further Pure 2

Mark Scheme

2006 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

M	mark is for method	
m or dM	mark is dependent on one or more M marks and is for method	
A	mark is dependent on M or m marks and is for accuracy	
B	mark is independent of M or m marks and is for method and accuracy	
E	mark is for explanation	
Jor ft or F	follow through from previous	
	incorrect result	
CAO	correct answer only	MC

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a) (b)	$\begin{aligned} & \frac{1}{r^{2}}-\frac{1}{(r+1)^{2}}=\frac{(r+1)^{2}-r^{2}}{r^{2}(r+1)^{2}} \\ & =\frac{2 r+1}{r^{2}(r+1)^{2}} \\ & \frac{3}{1^{2} \times 2^{2}}=\frac{1}{1^{2}}-\frac{1}{2^{2}} \\ & \frac{5}{2^{2} \times 3^{2}}=\frac{1}{2^{2}}-\frac{1}{3^{2}} \\ & \frac{7}{3^{2} \times 4^{2}}=\frac{1}{3^{2}}-\frac{1}{4^{2}} \\ & \frac{2 n+1}{n^{2}(n+1)^{2}}=\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}} \end{aligned}$ Clear cancellation $1-\frac{1}{(n+1)^{2}}$	M1A1 M1 A1F	2	AG A1 for at least 3 lines
	Total		6	
2(a) (b)	$\begin{aligned} & p=-4 \\ & (\alpha+\beta+\gamma)^{2}=\sum \alpha^{2}+2 \sum \alpha \beta \\ & 16=20+2 \sum \alpha \beta \\ & \sum \alpha \beta=-2 \\ & q=-2 \end{aligned}$ $3-i$ is a root Third root is -2 $\begin{aligned} & \alpha \beta \gamma=(3+\mathrm{i})(3-\mathrm{i})(-2) \\ & =-20 \\ & r=+20 \end{aligned}$	B1 M1 A1 A1F A1F B1 B1F M1 A1F A1F	5 5	Real $\alpha \beta \gamma$ Real r
	Alternative to (b) Substitute $3+\mathrm{i}$ into equation $\begin{aligned} & (3+i)^{2}=8+6 \mathrm{i} \\ & (3+\mathrm{i})^{3}=18+26 \mathrm{i} \\ & r=20 \end{aligned}$	M1 B1 B1 A2,1,0		Provided r is real
	Total		10	

Q	Solution	Marks	Total	Comments
4(a)	Assume result true for $n=k$			
	$\sum_{r=1}^{k}(r+1) 2^{r-1}=k 2^{k}$			
	$\sum_{r=1}^{k+1}(r+1) 2^{r-1}=k 2^{k}+(k+2) 2^{k}$	M1A1		
	$=2^{k}(k+k+2)$	m1		
	$=2^{k}(2 k+2)$			
	$=2^{k+1}(k+1)$	A1		
	$n=1 \quad 2 \times 2^{0}=2=1 \times 2^{1}$	B1		
	$P_{k} \Rightarrow P_{k+1}$ and P_{1} is true	E1	6	Provided previous 5 marks earned
(b)	$\sum_{r=1}^{2 n}(r+1) 2^{r-1}-\sum_{r=1}^{n}(r+1) 2^{r-1}$	M1		Sensible attempt at the difference between 2 series
	$=2 n 2^{2 n}-n 2^{n}$	A1		
	$=n\left(2^{n+1}-1\right) 2^{n}$	A1	3	AG
	Total		9	

MFP2 (cont)

Q	Solution	Marks	Total	Comments	
6(a)(i)	$z+\frac{1}{z}=\cos \theta+\mathrm{i} \sin \theta+$			$\operatorname{Or} \mathrm{z}+\frac{1}{z}=\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}$	
	$\cos (-\theta)+\mathrm{i} \sin (-\theta)$	M1			
	$=2 \cos \theta$	A1	2	AG	
(ii)	$z^{2}+\frac{1}{z^{2}}=\cos 2 \theta+i \sin 2 \theta$				
	$+\cos (-2 \theta)+\mathrm{i} \sin (-2 \theta)$	M1			
	$=2 \cos 2 \theta$	A1	2	OE	
(iii)	$z^{2}-z+2-\frac{1}{z}+\frac{1}{z^{2}}$				
	$=2 \cos 2 \theta-2 \cos \theta+2$	M1			
	Use of $\cos 2 \theta=2 \cos ^{2} \theta-1$	m1			
	$=4 \cos ^{2} \theta-2 \cos \theta$	A1	3	AG	
(b)	$z+\frac{1}{z}=0 \quad z= \pm \mathrm{i}$	M1A1			
				Alternative:	
	$z+\frac{1}{z}=1 \quad z^{2}-z+1=0$	M1A1		$\cos \theta=0 \quad \theta= \pm \frac{1}{2} \pi$	M1
				$z= \pm \mathrm{i}$	A1
	$z=\frac{1 \pm \mathrm{i} \sqrt{3}}{2}$	A1F	5	$\cos \theta=\frac{1}{2} \quad \theta= \pm \frac{1}{3} \pi$	M1
	Accept solution to (b) if done otherwise			$z=\mathrm{e}^{ \pm \frac{1}{3} \pi \mathrm{i}}=\frac{1}{2}(1 \pm \mathrm{i} \sqrt{3})$	A1 A1
	Alternative				
	If $\theta=+\frac{1}{2} \pi \quad \theta=\frac{1}{3} \pi$	M1			
	$z=\mathrm{i} \quad \mathrm{z}=\frac{1+\sqrt{3} \mathrm{i}}{2}$	A1			
	Or any correct z values of θ	M1			
	Any 2 correct answers	A1			
	One correct answer only	B1			
	Total		12		

$A Q A$

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6360

MFP2 Further Pure 2

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
1(a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& r^{2}+r-1=A\left(r^{2}+r\right)+B \\
\& A=1, B=-1 \\
\& \begin{array}{r}
r=1 \quad 1-\frac{1}{1}+\frac{1 / 2}{2} \\
r=2 \quad 1-\frac{1}{2}+\frac{1}{23} \\
r=99 \quad 1-\frac{1}{\not 99}+\frac{1}{100} \\
\text { Sum }=98+\frac{1}{100} \\
=98.01
\end{array}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
A1F \\
M1 \\
A1F \\
m1 \\
A1F
\end{tabular} \& 3 \& \begin{tabular}{l}
Any correct method \\
\(\mathrm{ft} B\) if incorrect \(A\) and vice versa \\
Or \(\quad \frac{r^{2}+r-1}{r^{2}+r}=1-\frac{1}{r(r+1)}\)
\[
=1-\left(\frac{1}{r}-\frac{1}{r+1}\right) \mathrm{M} 1 \mathrm{~A} 1
\] \\
Do not allow M1 if merely \(\sum \frac{1}{r}-\sum \frac{1}{r+1}\) is summed \\
A1 for suitable (3 at least) number of rows \\
Must have 98 or 99 \\
OE Allow correct answer with no working 4 marks
\end{tabular} \\
\hline \& Total \& \& 7 \& \\
\hline \begin{tabular}{l}
2(a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& \dot{x}=1-t^{2}, \dot{y}=2 t \\
\& \dot{x}^{2}+\dot{y}^{2}=\left(1-t^{2}\right)^{2}+4 t^{2} \\
\&=\left(1+t^{2}\right)^{2} \\
\& S=2 \pi \int_{1}^{2}\left(1+t^{2}\right) t^{2} \mathrm{~d} t \\
\&= 2 \pi\left[\frac{t^{3}}{3}+\frac{t^{5}}{5}\right]_{1}^{2} \\
\&= 2 \pi\left[\frac{8}{3}+\frac{32}{5}-\frac{1}{3}-\frac{1}{5}\right] \\
\&= \frac{256 \pi}{15}
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
M1A1 \\
m1 \\
A1F \\
A1F
\end{tabular} \& 3

5 \& | AG; must be intermediate line |
| :--- |
| Must be correct substitutions for M1 |
| Allow if one term integrated correctly |
| Any form |

\hline \& Total \& \& 8 \&

\hline
\end{tabular}

MFP2 (cont)

Q	Solution	Marks	Total	Comments
[4	 Circle Correct centre Enclosing the origin Half line Correct starting point Correct angle Correct part of the line indicated	B1 B1 B1 B1 B1 B1 B1F	3 3 3 1	
	Total		7	
5(a)(i)	$\alpha+\beta+\gamma=4 \mathrm{i}$	B1	1	
(ii)	$\alpha \beta \gamma=4-2 \mathrm{i}$	B1	1	
(b)(i)	$\alpha+\alpha=4 \mathrm{i}, \alpha=2 \mathrm{i}$	B1	1	AG
(ii)	$\beta \gamma=\frac{4-2 \mathrm{i}}{2 \mathrm{i}}=-2 \mathrm{i}-1$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Some method must be shown, eg $\frac{2}{\mathrm{i}}-1$ AG
(iii)	$\begin{aligned} q & =\alpha \beta+\beta \gamma+\gamma \alpha \\ & =\alpha(\beta+\gamma)+\beta \gamma \\ & =2 \mathrm{i} .2 \mathrm{i}-2 \mathrm{i}-1=-2 \mathrm{i}-5 \end{aligned}$	M1 M1 A1	3	Or $\alpha^{2}+\beta \gamma$, ie suitable grouping AG
(c)	Use of $\beta+\gamma=2 \mathrm{i}$ and $\beta \gamma=-2 \mathrm{i}-1$ $z^{2}-2 \mathrm{i} z-(1+2 \mathrm{i})=0$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Elimination of say γ to arrive at $\beta^{2}-2 \mathrm{i} \beta-(1+2 \mathrm{i})=0 \quad$ M1AA0 unless also some reference to γ being a root AG
(d)	$\begin{aligned} & \mathrm{f}(-1)=1+2 \mathrm{i}-1-2 \mathrm{i}=0 \\ & \beta=-1, \quad \gamma=1+2 \mathrm{i} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1A1 } \end{gathered}$	3	For any correct method A1 for each answer
	Total		13	

MFP2 (cont)

General Certificate of Education

Mathematics 6360

MFP2

Further Pure 2

Mark Scheme

2007 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

[^0]
Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP2

MFP2 (cont)

Q	Solution	Marks	Total	Comments
3(a)	$-k^{3} \mathrm{i}+2(1-\mathrm{i})\left(-k^{2}\right)+32(1+\mathrm{i})=0$ Equate real and imaginary parts: $\begin{aligned} & -k^{3}+2 k^{2}+32=0 \\ & -2 k^{2}+32=0 \\ & k= \pm 4 \\ & k=+4 \end{aligned}$ Sum of roots is $-2(1-i)$ Third root 2-2i	M1 A1 A1 A1 E1 M1 $\mathrm{A} \downarrow$	5 2	Any form AG Or $\alpha \beta \gamma=-(32+32 \mathrm{i})$ Must be correct for M1
			7	
4(a)(i)	$\begin{aligned} \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{1}{\cosh t}\right) & =-1(\cosh t)^{-2} \sinh t \\ & =-\operatorname{sech} t \tanh t \end{aligned}$	M1A1		$\operatorname{Or} \frac{-2\left(\mathrm{e}^{t}-\mathrm{e}^{-t}\right)}{\left(\mathrm{e}^{t}+\mathrm{e}^{-t}\right)^{2}}$ AG
(ii)	Use of $\tanh ^{2} t=1-\operatorname{sech}^{2} t$ Printed result $\begin{aligned} & \dot{x}=1-\operatorname{sech}^{2} t \quad(\dot{y}=-\operatorname{sech} t \tanh t) \\ & \dot{x}^{2}+\dot{y}^{2}=\left(1-\operatorname{sech}^{2} t\right)^{2}+\operatorname{sech}^{2} t-\operatorname{sech}^{4} t \\ & =1-\operatorname{sech}^{2} t=\tanh ^{2} t \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		
(b)(i)		$\begin{gathered} \mathrm{B} 1 \\ \text { M1A1 } \\ \text { A1 } \end{gathered}$	4	Any form AG
(ii)	$\begin{aligned} & s=\int_{0}^{t} \tanh t \mathrm{~d} t \\ & =[\ln \cosh t]_{0}^{t} \\ & =\ln \cosh t \end{aligned}$	M1 A1 A1	3	Ignore limits for M1 and first A1 AG
(iii)	$\begin{aligned} & \mathrm{e}^{s}=\cosh t \\ & y=\mathrm{e}^{-s} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	AG
(c)	$\begin{aligned} & S=2 \pi \int_{0}^{t} \operatorname{sech} t \tanh t \mathrm{~d} t \\ & =2 \pi[-\operatorname{sech} t]_{0}^{t} \\ & =2 \pi(1-\operatorname{sech} t) \\ & =2 \pi\left(1-\mathrm{e}^{-s}\right) \end{aligned}$	M1 A1 A1 A1	4	Ignore limits for M1 and first A1 AG
	Total		18	

MFP2 (cont)

MFP2 (cont)

Q	Solution	Marks	Total	Comments
6(a)	$1, \mathrm{e}^{ \pm \frac{2 \pi \mathrm{i}}{3}}$	M1A1	2	M1 for any method which would lead to the correct answers Accept e^{0} or $\mathrm{e}^{0 \mathrm{i}}$ Also accept answers written down correctly
(b)	Any correct method Shown for one root	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	AG
(c)(i)	$\frac{\omega}{\omega+1}=\frac{\omega}{-\omega^{2}}$	M1		ie use of result in (b)
	$=-\frac{1}{\omega}$	A1	2	AG
(ii)	$\frac{\omega^{2}}{\omega^{2}+1}=-\omega$	A1	1	AG
(iii)	$\left(\frac{\omega}{\omega+1}\right)^{k}+\left(\frac{\omega^{2}}{\omega^{2}+1}\right)^{k}=\left(-\frac{1}{\omega}\right)^{k}+(-\omega)^{k}$	M1A1		
	Use of $\omega=\mathrm{e}^{\frac{2 \pi \mathrm{i}}{3}}$	m1		
	$=(-1)^{k}\left(\mathrm{e}^{\frac{-2 k \pi \mathrm{i}}{3}}+\mathrm{e}^{\frac{2 k \pi \mathrm{i}}{3}}\right)$	A1		
	$=(-1)^{k} 2 \cos \frac{2 k \pi}{3}$	A1	5	AG
	Total		12	

MFP2 (cont)

General Certificate of Education

Mathematics 6360

MFP2 Further Pure 2

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

[^1]
Key to mark scheme and abbreviations used in marking

| M | mark is for method | |
| :--- | :--- | :--- | :--- |
| m or dM | mark is dependent on one or more M marks and is for method | |
| A | mark is dependent on M or m marks and is for accuracy | |

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
\[
4(a)
\] \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& \frac{x}{1+x^{2}}+\tan ^{-1} x \\
\& \int_{0}^{1} \tan ^{-1} x \mathrm{~d} x=\left[x \tan ^{-1} x\right]_{0}^{1}-\int_{0}^{1} \frac{x \mathrm{~d} x}{1+x^{2}} \\
\& \int \frac{x \mathrm{~d} x}{1+x^{2}}=\frac{1}{2} \ln \left(1+x^{2}\right) \\
\& \mathrm{I}=1 \tan ^{-1} 1-\frac{1}{2} \ln 2 \\
\& =\frac{\pi}{4}-\ln \sqrt{2}
\end{aligned}
\] \& \begin{tabular}{l}
B1B1 \\
M1 \\
M1A1F \\
M1 \\
A1
\end{tabular} \& 2

5 \& | either use of part (a) or integration by parts. Allow if sign error ft on $\int \frac{x}{1-x^{2}} \mathrm{~d} x$ |
| :--- |
| AG |

\hline \& Total \& \& 7 \&

\hline | 5(a) |
| :--- |
| (b)(i) |
| (ii) |
| (c) | \& | Explanation |
| :--- |
| Perpendicular bisector of $A B$ through O |
| half-line |
| from B |
| parallel to $O A$ $(1+\mathrm{i}) z_{1}$ | \& | E2,1,0 |
| :--- |
| B1 |
| M1A1 | \& | 2 |
| :--- |
| 2 |
| 3 |
| 2 | \& | E1 for $\mathrm{i}=\mathrm{e}^{\frac{\pi \mathrm{i}}{2}}$ or $\mathrm{i}_{1}=-y_{1}+\mathrm{i} x_{1}$ |
| :--- |
| If L_{2} is taken to be the line $A B$ give B 0 ft if L_{2} taken as line $A B$ |

\hline \& Total \& \& 9 \&

\hline 6(a)

(b) \& \begin{tabular}{l}
$$
\begin{aligned}
\left(1-\frac{1}{(k+1)^{2}}\right) \times \frac{k+1}{2 k} & =\frac{(k+1)^{2}-1}{(k+1)^{2}} \times \frac{k+1}{2 k} \\
& =\frac{k^{2}+2 k}{(k+1)^{2}} \times \frac{k+1}{2 k} \\
& =\frac{k+2}{2(k+1)}
\end{aligned}
$$

Assume true for $n=k$, then
$$
\begin{array}{r}
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \ldots\left(1-\frac{1}{(k+1)^{2}}\right) \\
=\frac{k+2}{2(k+1)}
\end{array}
$$

True for $n=2$ shown $1-\frac{1}{2^{2}}=\frac{3}{4}$ $P_{n} \Rightarrow P_{n+1}$ and P_{2} true

 \&

M1

A1

A1

M1

A1

B1

E1
\end{tabular} \& 3

4 \& | AG |
| :--- |
| only if the other 3 marks earned |

\hline \& Total \& \& 7 \&

\hline
\end{tabular}

MFP2 (cont)

Q	Solution	Marks	Total	Comments
7(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{\sqrt{x}}$	B1		accept $2 x^{-\frac{1}{2}}$ etc
	$\sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}}=\sqrt{1+\frac{4}{x}}$	M1A1F		ft sign error in $\frac{\mathrm{d} y}{\mathrm{~d} x}$
	$=\sqrt{\frac{x+4}{x}}$	A1	4	AG
(b)(i)	$x=4 \sinh ^{2} \theta, \mathrm{~d} x=8 \sinh \theta \cosh \theta \mathrm{~d} \theta$	M1A1		M1 for any attempt at $\frac{\mathrm{d} x}{\mathrm{~d} \theta}$
	$\begin{aligned} \mathrm{I} & =\int \sqrt{\frac{4 \sinh ^{2} \theta+4}{4 \sinh ^{2} \theta}} 8 \sinh \theta \cosh \theta \mathrm{~d} \theta \\ & =\int \frac{2 \cosh \theta}{2 \sinh \theta} 8 \sinh \theta \cosh \theta \mathrm{~d} \theta \end{aligned}$	M1 m1		ie use of $\cosh ^{2} \theta-\sinh ^{2} \theta=1$
	$=\int 8 \cosh ^{2} \theta \mathrm{~d} \theta$	A1	5	AG
(ii)	Use of $2 \cosh ^{2} \theta=1+\cosh 2 \theta$	M1		allow if sign error
	$I=\int 4(1+\cosh 2 \theta) d \theta$	A1		oe
	$=4 \theta+2 \sinh 2 \theta$	A1F		oe
	Use of $\sinh 2 \theta=2 \sinh \theta \cosh \theta$	m1		
	$=4 \sinh ^{-1} \frac{1}{2}+4 \times \frac{1}{2} \sqrt{1+\frac{1}{4}}$	A1F		
	$=4 \sinh ^{-1} \frac{1}{2}+\sqrt{5}$	A1	6	AG
	Total		15	

Q	Solution	Marks	Total	Comments
8(a)(i)	$\begin{aligned} z^{3} & =\frac{4 \pm \sqrt{16-32}}{2} \\ & =2 \pm 2 \mathrm{i} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	AG
(ii)	$2+2 \mathrm{i}=2 \sqrt{2} \mathrm{e}^{\frac{\pi \mathrm{i}}{4}}, 2-2 \mathrm{i}=2 \sqrt{2} \mathrm{e}^{\frac{-\pi \mathrm{i}}{4}}$	$\begin{gathered} \mathrm{M} 1 \\ \mathrm{~A} 1 \mathrm{~A} 1 \end{gathered}$		M1 for either result or for one of $\begin{aligned} & r=2 \sqrt{2}, \quad \theta= \pm \frac{\pi}{4} \\ & \left(r=2 \sqrt{2} \quad \mathrm{~A} 1, \theta= \pm \frac{\pi}{4} \mathrm{~A} 1\right) \end{aligned}$
	$\begin{aligned} & z=\sqrt{2} \mathrm{e}^{\frac{\pi \mathrm{i}}{12}+\frac{2 \mathrm{k} \pi \mathrm{i}}{3}} \text { or } \sqrt{2} \mathrm{e}^{\frac{-\pi \mathrm{i}}{12}+\frac{2 \mathrm{k} \pi \mathrm{i}}{3}} \\ & z=\sqrt{2} \mathrm{e}^{\frac{ \pm \pi \mathrm{i}}{12}}, \sqrt{2} \mathrm{e}^{\frac{ \pm 3 \pi \mathrm{i}}{4}}, \sqrt{2} \mathrm{e}^{\frac{ \pm 7 \pi \mathrm{i}}{12}} \end{aligned}$	M1 A2,1,0 F	6	M1 for either allow A1 for any 3 correct ft errors in $\pm \frac{\pi}{4}$
(b)	Multiplication of brackets Use of $e^{i \theta}+e^{-\mathrm{i} \theta}=2 \cos \theta$	M1 A1	2	AG
(c)	$\left(z-\sqrt{2} \mathrm{e}^{\frac{\pi \mathrm{i}}{12}}\right)\left(z-\sqrt{2} \mathrm{e}^{-\frac{\pi \mathrm{i}}{12}}\right)$			
	$\begin{aligned} & =z^{2}-2 \sqrt{2} \cos \frac{\pi}{12} z+2 \\ & \left(z^{2}-2 \sqrt{2} \cos \frac{\pi}{12} z+2\right) \end{aligned}$	M1A1F		PI
	Product is $\begin{aligned} & \left(z^{2}-2 \sqrt{2} \cos \frac{7 \pi}{12} z+2\right) \\ & \left(z^{2}-2 \sqrt{2} \cos \frac{3 \pi}{4} z+2\right) \end{aligned}$	A1F	3	$\left(\right.$ or $\left.z^{2}+2 z+2\right)$
	Total		13	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MFP2 Further Pure 2

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk
Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
J or ft or F	follow through from previous		
	incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP2

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
1(a) \\
(b)
\end{tabular} \& Any method for finding \(r\) or \(\theta\)
\[
\begin{aligned}
\& r=4 \sqrt{2}, \theta=\frac{\pi}{4} \\
\& z^{5}=4 \sqrt{2} \mathrm{e}^{\frac{\pi \mathrm{i}}{4}} \\
\& z=\sqrt{2} \mathrm{e}^{\frac{\pi \mathrm{i}}{20}+\frac{2 k \mathrm{i}}{5}}
\end{aligned}
\]
\[
\begin{gathered}
z=\sqrt{2} \mathrm{e}^{\frac{\pi \mathrm{i}}{20}}, \sqrt{2} \mathrm{e}^{\frac{9 \pi \mathrm{i}}{20}}, \sqrt{2} \mathrm{e}^{\frac{17 \pi \mathrm{i}}{20}}, \\
\sqrt{2} \mathrm{e}^{\frac{-7 \pi \mathrm{i}}{20}}, \sqrt{2} \mathrm{e}^{\frac{-15 \pi \mathrm{i}}{20}}
\end{gathered}
\] \& \begin{tabular}{l}
M1 \\
A1A1
\[
\begin{gathered}
\text { M1 } \\
\text { A1F } \\
\text { A1F } \\
\text { A2,1,0 } \\
\text { F }
\end{gathered}
\]
\end{tabular} \& 3

5 \& | M1 needs some reference to $a+2 k \pi \mathrm{i}$ $\left.\begin{array}{l} \text { A1 for } r \\ \text { A1 for } \theta \end{array}\right] \text { incorrect } r, \theta \text { part (a) }$ |
| :--- |
| Accept r in any form eg $32^{\frac{1}{10}}$ |
| Correct but some answers outside range |
| allow A1 |
| ft incorrect r, θ in part (a) |

\hline \& Total \& \& 8 \&

\hline | 2(a) |
| :--- |
| (b) | \& \[

$$
\begin{aligned}
& \text { Attempt to expand }(2 r+1)^{3}-(2 r-1)^{3} \\
& (2 r+1)^{3} \text { or }(2 r-1)^{3} \text { expanded } \\
& 24 r^{2}+2 \\
& r=1 \quad 3^{3}-1^{3}=24 \times 1^{2}+2 \\
& r=2 \quad 5^{3}-3^{3}=24 \times 2^{2}+2 \\
& r=n \quad(2 n+1)^{3}-(2 n-1)^{3}=24 \times n^{2}+2 \\
& (2 n+1)^{3}-1=24 \sum_{r=1}^{n} r^{2}+2 n \\
& 8 n^{3}+12 n^{2}+6 n+1-1-2 n=24 \sum_{r=1}^{n} r^{2} \\
& 8 n^{3}+12 n^{2}+4 n=24 \sum_{r=1}^{n} r^{2} \\
& \sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 |
| M1A1 |
| A1 |
| M1 |
| A1 |
| A1 | \& 3

6 \& | AG |
| :--- |
| 3 rows seen |
| Do not allow M1 for $(2 n+1)^{3}-1$ not equal to anything |
| M1 for multiplication of bracket or taking $(2 n+1)$ out as a factor |
| CAO |
| AG |

\hline \& Total \& \& 9 \&

\hline
\end{tabular}

MFP2 (cont)

Q	Solution	Marks	Total	Comments
5	Assume result true for $n=k$ Then $\sum_{r=1}^{k+1}\left(r^{2}+1\right) r$! $=\left((k+1)^{2}+1\right)(k+1)!+k(k+1)!$ Taking out $(k+1)$! as factor $\left.\begin{array}{l} =(k+1)!\left(k^{2}+2 k+1+1+k\right) \\ =(k+1)(k+2)! \\ k=1 \text { shown }\left(1^{2}+1\right) 1!=2 \\ 1 \times 2!=2 \end{array}\right]$ $\mathrm{P}_{k} \Rightarrow \mathrm{P}_{k+1}$ and P_{1} true	M1A1 m1 A1 A1 B1 E1	7	If all 6 marks earned
	Total		7	
6(a)(i)	$\begin{aligned} & \cos 3 \theta+\mathrm{i} \sin 3 \theta=(\cos \theta+\mathrm{i} \sin \theta)^{3} \\ & =\cos ^{3} \theta+3 \mathrm{i} \cos ^{2} \theta \sin \theta+3 \mathrm{i}^{2} \cos \theta \sin ^{2} \theta \\ & +\mathrm{i}^{3} \sin ^{3} \theta \\ & \text { Real parts: } \cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta \end{aligned}$	M1 A1 A1	3	AG
(ii)	Imaginary parts: $\sin 3 \theta=3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta$	A1F	1	
(iii)	$\begin{aligned} & \tan 3 \theta=\frac{\sin 3 \theta}{\cos 3 \theta} \\ & =\frac{3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta}{\cos ^{3} \theta-3 \sin ^{2} \theta \cos \theta} \\ & =\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta} \\ & =\frac{\tan ^{3} \theta-3 \tan \theta}{3 \tan ^{2} \theta-1} \end{aligned}$	M1 A1F A1	3	Used Error in $\sin 3 \theta$ AG
(b)(i)	$\begin{aligned} & \tan \frac{3 \pi}{12}=1 \\ & \tan \frac{\pi}{12} \text { is a root of } 1=\frac{x^{3}-3 x}{3 x^{2}-1} \\ & x^{3}-3 x^{2}-3 x+1=0 \end{aligned}$	B1 M1 A1	3	Used (possibly implied) Must be hence
(ii)	Other roots are $\tan \frac{5 \pi}{12}, \tan \frac{9 \pi}{12}$	B1B1	2	
(c)	$\begin{aligned} & \tan \frac{\pi}{12}+\tan \frac{5 \pi}{12}+\tan \frac{9 \pi}{12}=3 \\ & \tan \frac{\pi}{12}+\tan \frac{5 \pi}{12}=4 \end{aligned}$	M1 A1	2	Must be hence
	Total		14	

General Certificate of Education

Mathematics 6360

MFP2
 Further Pure 2

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

[^2]
Key to mark scheme and abbreviations used in marking

$\left.\begin{array}{llll}\text { M } & \text { mark is for method } & & \\ \hline \text { m or dM } & \text { mark is dependent on one or more M marks and is for method } \\ \text { A } & \text { mark is dependent on M or m marks and is for accuracy }\end{array}\right]$

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP2

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
1(a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& 5\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right)+\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right) \\
\& =3 \mathrm{e}^{x}-2 \mathrm{e}^{-x} \\
\& 3 \mathrm{e}^{x}-2 \mathrm{e}^{-x}+5=0 \\
\& 3 \mathrm{e}^{2 x}+5 \mathrm{e}^{x}-2=0 \\
\& \left(3 \mathrm{e}^{x}-1\right)\left(\mathrm{e}^{x}+2\right)=0 \\
\& \mathrm{e}^{x} \neq-2 \\
\& \mathrm{e}^{x}=\frac{1}{3} \quad x=\ln \frac{1}{3}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1F \\
E1 \\
A1F
\end{tabular} \& 2

4 \& | M0 if no 2 s in denominator |
| :--- |
| ft if 2 s missing in (a) |
| any indication of rejection |
| provided quadratic factorises into real factors |

\hline \& Total \& \& 6 \&

\hline 2(a)

(b) \& \[
$$
\begin{aligned}
& 1=A(r+2)+B r \\
& 2 A=1, \quad A=\frac{1}{2} \\
& A+B=0, \quad B=-\frac{1}{2} \\
& r=10 \quad \frac{1}{2}\left(\frac{1}{10.11}-\frac{1}{11.12}\right) \\
& r=11 \quad \frac{1}{2}\left(\frac{1}{11.12}-\frac{1}{12.13}\right) \\
& \quad \ldots \cdots \\
& r=98 \quad \frac{1}{2}\left(\frac{1}{98.99}-\frac{1}{99.100}\right) \\
& S=\frac{1}{2}\left(\frac{1}{10.11}-\frac{1}{99.100}\right)
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 |
| M1A1 |
| m1 |
| A1 | \& 4 \& | if (a) is incorrect but $A=\frac{1}{2}$ and $B=-\frac{1}{2}$ used, allow full marks for (b) |
| :--- |
| 3 relevant rows seen |
| if split into $\frac{1}{2 r}-\frac{1}{r+1}+\frac{1}{2(r+2)}$, follow mark scheme, in which case $\frac{1}{2.10}-\frac{1}{2.11}+\frac{1}{2.100}-\frac{1}{2.99}$ scores m1 |

\hline \& Total \& \& 7 \&

\hline
\end{tabular}

MFP2 (cont)

MFP2 (cont)

MFP2 (cont)

MFP2 (cont)

Q	Solution	Marks	Total	Comments
7(a)	Clear reason given	E1	1	Minimum $\mathrm{O} \times \mathrm{E}=\mathrm{E}$
(b)(i)	$(k+1)\left((k+1)^{2}+5\right)-k\left(k^{2}+5\right)$	M1		
	$=3 k^{2}+3 k+6$	A1		
	$k^{2}+k=k(k+1)=M(2)$	E1		Must be shown
	$\mathrm{f}(k+1)-\mathrm{f}(k)=M(6)$	E1	4	
(ii)	Assume true for $n=k$ $\begin{aligned} & \mathrm{f}(k+1)-\mathrm{f}(k)=M(6) \\ & \therefore \mathrm{f}(k+1)=M(6)+\mathrm{f}(k) \end{aligned}$	M1		Clear method
	$=M(6)+M(6)$	A1		
	$=M(6)$			
	True for $n=1$ $P(n) \rightarrow P(n+1)$ and $P(1)$ true	$\begin{aligned} & \text { B1 } \\ & \text { E1 } \end{aligned}$	4	Provided all other marks earned in (b)(ii)
	Total		9	

MFP2 (cont)

Q	Solution	Marks	Total	Comments
8(a)(i)	$\left(z+\frac{1}{z}\right)\left(z-\frac{1}{z}\right)=z^{2}-\frac{1}{z^{2}}$	B1	1	
(ii)	$\begin{aligned} & \left(z^{2}-\frac{1}{z^{2}}\right)^{2}\left(z+\frac{1}{z}\right)^{2} \\ & =\left(z^{4}-2+\frac{1}{z^{4}}\right)\left(z^{2}+2+\frac{1}{z^{2}}\right) \end{aligned}$	M1A1		Alternatives for M1A1: $\begin{aligned} & \left(z^{4}+4 z^{2}+6+\frac{4}{z^{2}}+\frac{1}{z^{4}}\right)\left(z^{2}-2+\frac{1}{z^{2}}\right) \text { or } \\ & \left(z^{3}-\frac{1}{z^{3}}\right)^{2}-2\left(z^{3}-\frac{1}{z^{3}}\right)\left(z-\frac{1}{z}\right)+\left(z-\frac{1}{z}\right)^{2} \end{aligned}$
	$=z^{6}+\frac{1}{z^{6}}+2\left(z^{4}+\frac{1}{z^{4}}\right)-\left(z^{2}+\frac{1}{z^{2}}\right)-4$	A1	3	CAO (not necessarily in this form)
(b)(i)	$\begin{aligned} z^{n}+\frac{1}{z^{n}}= & \cos n \theta+i \sin n \theta \\ & \quad+\cos (-n \theta)+i \sin (-n \theta) \\ = & 2 \cos n \theta \end{aligned}$	M1A1 A1	3	AG SC: if solution is incomplete and $(\cos \theta+\mathrm{i} \sin \theta)^{-n}$ is written as $\cos n \theta-\mathrm{i} \sin n \theta$, award M1A0A1
(ii)	$z^{n}-z^{-n}=2 i \sin n \theta$	B1	1	
(c)	RHS $=2 \cos 6 \theta+4 \cos 4 \theta-2 \cos 2 \theta-4$	$\begin{aligned} & \text { M1 } \\ & \text { A1F } \end{aligned}$		ft incorrect values in (a)(ii) provided they are cosines
	$\begin{aligned} & \text { LHS }=-64 \cos ^{4} \theta \sin ^{2} \theta \\ & \cos ^{4} \theta \sin ^{2} \theta \end{aligned}$	M1		
	$=-\frac{1}{32} \cos 6 \theta-\frac{1}{16} \cos 4 \theta+\frac{1}{32} \cos 2 \theta+\frac{1}{16}$	A1	4	
(d)	$-\frac{\sin 6 \theta}{192}-\frac{\sin 4 \theta}{64}+\frac{\sin 2 \theta}{64}+\frac{\theta}{16}(+k)$	$\begin{gathered} \text { M1 } \\ \text { A1F } \end{gathered}$	2	ft incorrect coefficients but not letters A, B, C, D
	Total		14	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MFP2
 Further Pure 2

Mark Scheme

2009 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP2

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
1(a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& \text { LHS }=1+\frac{1}{2}\left(\mathrm{e}^{2 \theta}-2+\mathrm{e}^{-2 \theta}\right) \\
\& \quad=\frac{1}{2}\left(\mathrm{e}^{2 \theta}+\mathrm{e}^{-2 \theta}\right)=\cosh 2 \theta \\
\& 3+6 \sinh ^{2} \theta=2 \sinh \theta+11 \\
\& 3 \sinh ^{2} \theta-\sinh \theta-4=0 \\
\& (3 \sinh \theta-4)(\sinh \theta+1)=0 \\
\& \sinh \theta=\frac{4}{3} \text { or }-1 \\
\& \theta=\ln 3 \\
\& \theta=\ln (\sqrt{2}-1)
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1F \\
A1F \\
A1F
\end{tabular} \& 3

6 \& | Expansion of $\frac{1}{2}\left(\mathrm{e}^{\theta}-\mathrm{e}^{-\theta}\right)^{2}$ correctly Any form |
| :--- |
| AG |
| OE |
| Attempt to factorise or formula |
| ft if factorises or real roots found |

\hline \& Total \& \& 9 \&

\hline 2(a) \& | |
| :--- |
| Correct points P_{1} and P_{2} indicated $\begin{aligned} & \sin \alpha=\frac{2}{4} \\ & \alpha=\frac{\pi}{6} \end{aligned}$ |
| Range is $\frac{\pi}{3} \leqslant \arg z \leqslant \frac{2 \pi}{3}$ | \& | B1 |
| :--- |
| B1 |
| B1 |
| B1F |
| B1F |
| M1 |
| A1 |
| A1 | \& 4

4 \& | Circle |
| :--- |
| Correct centre |
| Correct radius |
| Inside shading |
| Possibly by tangents drawn ft mirror image of circle in x-axis |
| Deduct 1 for angles in degrees |

\hline \& Total \& \& 8 \&

\hline
\end{tabular}

Q	Solution	Marks	Total	Comments
3(a)	$\left.\begin{array}{l} \mathrm{f}(r)-\mathrm{f}(r-1) \\ =\frac{1}{4} r^{2}(r+1)^{2}-\frac{1}{4}(r-1)^{2} r^{2} \\ =\frac{1}{4} r^{2}\left(r^{2}+2 r+1-r^{2}+2 r-1\right) \\ =r^{3} \end{array}\right] \begin{aligned} & r=n: n^{3}=\frac{1}{4} n^{2}(n+1)^{2}-\frac{1}{4}(n-1)^{2} n^{2} \\ & r=2 n: \\ & (2 n)^{3}=\frac{1}{4}(2 n)^{2}(2 n+1)^{2}-\frac{1}{4}(2 n-1)^{2}(2 n)^{2} \\ & \begin{array}{l} \sum_{r=n}^{2 n} r^{3}=\frac{1}{4} \cdot 4 n^{2}(2 n+1)^{2}-\frac{1}{4}(n-1)^{2} n^{2} \\ \quad=\frac{3}{4} n^{2}(5 n+1)(n+1) \end{array} \end{aligned}$	M1 A1 A1 M1 A1 A1 M1 A1	5	Correct expansions of $(r+1)^{2}$ and $(r-1)^{2}$ AG For either $r=n$ or $r=2 n$. PI AG Alternatively $\sum_{r=1}^{2 n} r^{3}$ and $\sum_{r=1}^{n-1} r^{3}$ stated M1A1A1 $\begin{array}{lr}\text { Difference } & \text { M1 } \\ \text { Answer } & \text { A1 }\end{array}$ (M1 for either)
	Total		8	
4(a)	$\begin{aligned} & \text { Use of }\left(\sum \alpha\right)^{2}=\sum \alpha^{2}+2 \sum \alpha \beta \\ & 1=-5+2 \sum \alpha \beta \\ & \sum \alpha \beta=3 \end{aligned}$	M1 A1 A1	3	AG
(b)	$\begin{aligned} & 1(-5-3)=-23-3 \alpha \beta \gamma \\ & \alpha \beta \gamma=-5 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	For use of identity
(c)	$z^{3}-z^{2}+3 z+5=0$	$\begin{gathered} \text { M1 } \\ \text { A1F } \end{gathered}$	2	For correct signs and "=0"
(d)	$\alpha^{2}+\beta^{2}+\gamma^{2}<0 \Rightarrow$ non real roots Coefficients real \therefore conjugate pair	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	
(e)	$\mathrm{f}(-1)=0 \Rightarrow z+1$ is a factor $\begin{aligned} & (z+1)\left(z^{2}-2 z+5\right)=0 \\ & z=-1,1 \pm 2 i \end{aligned}$	$\begin{gathered} \text { M1A1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	4	
	Total		13	

Q	Solution	Marks	Total	Comments
$5(\mathrm{a})$ (b)	$\begin{aligned} & \frac{\mathrm{d} u}{\mathrm{~d} x}=2 \cosh x \sinh x \\ & \quad=\sinh 2 x \\ & \mathrm{I}=\int_{x=0}^{x=1} \frac{\mathrm{~d} u}{1+u^{2}} \\ & =\left[\tan ^{-1} u\right]_{x=0}^{x=1} \\ & =\left[\tan ^{-1}\left(\cosh ^{2} x\right)\right]_{0}^{1} \\ & =\tan ^{-1}\left(\cosh ^{2} 1\right)-\tan ^{-1}\left(\cosh ^{2} 0\right) \\ & =\tan ^{-1}\left(\cosh ^{2} 1\right)-\frac{\pi}{4} \end{aligned}$	M1 A1 M1A1 A1 A1 A1	2	Any correct method AG Ignore limits here Or A1 for change of limits AG
	Total		7	
6	Assume result true for $n=k$ $\begin{aligned} & \text { Then } \sum_{r=1}^{k+1} \frac{2^{r} \times r}{(r+1)(r+2)} \\ & =\frac{2^{k+1}}{k+2}+\frac{2^{k+1}(k+1)}{(k+2)(k+3)}-1 \\ & =\frac{2^{k+1}(k+3+k+1)}{(k+2)(k+3)}-1 \\ & =\frac{2^{k+1} 2(k+2)}{(k+2)(k+3)}-1 \\ & =\frac{2^{k+2}}{k+3}-1 \\ & k=1: \text { LHS }=\frac{1}{3}, \text { RHS }=\frac{2^{2}}{3}-1 \\ & P_{k} \Rightarrow P_{k+1} \text { and } P_{1} \text { true } \end{aligned}$	M1A1 M1 A1 A1 B1 E1	7	SC If no series at all indicated on LHS, deduct 1 and give E0 at end Putting over common denominator (not including the -1 , unless separated later) Must be completely correct
	Total		7	

General Certificate of Education

Mathematics 6360

MFP2 Further Pure 2

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk
Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

[^3]
Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP2

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 1(a)

(b) \& \begin{tabular}{l}
$$
\begin{aligned}
z^{4} & =16 \mathrm{e}^{\frac{4 \pi i}{12}} \\
& =16\left(\cos \frac{\pi}{3}+\mathrm{i} \sin \frac{\pi}{3}\right) \\
& =8+8 \sqrt{3} \mathrm{i} ; a=8
\end{aligned}
$$

For other roots, $r=2$
$$
\theta=\frac{\pi}{12}+\frac{2 k \pi}{4}
$$

Roots are $2 \mathrm{e}^{\frac{7 \pi \mathrm{i}}{12}}, 2 \mathrm{e}^{\frac{-5 \pi \mathrm{i}}{12}}, 2 \mathrm{e}^{\frac{-11 \pi \mathrm{i}}{12}}$

 \&

M1

A1

A1F

B1

M1A1

$\mathrm{A} 2,1$,
0 F

 \& 5 \&

Allow M1 if $z^{4}=2 \mathrm{e}^{\frac{4 \pi}{12}}$

OE could be $2 a e^{\frac{\pi i}{3}}$ or

$$
2 a\left(\cos \frac{\pi}{3}+\mathrm{i} \sin \frac{\pi}{3}\right)
$$

ft errors in 2^{4}

for realising roots are of form $2 \times \mathrm{e}^{i \theta}$ M1 for strictly correct θ i.e must be $\left(\right.$ their $\left.\frac{\pi}{3}+2 k \pi\right) \times \frac{1}{4}$ ft error in $\frac{\pi}{12}$ or r

$$
\left[\begin{array}{ll}
\text { accept } 2 \mathrm{e}^{\left(\frac{\pi}{12}+\frac{2 k \pi}{4}\right) i} & k=-1,-2,1
\end{array}\right]
$$

\end{tabular}

\hline \& Total \& \& 8 \&

\hline 2(a)
(b)

(c) \& \begin{tabular}{l}
$$
A=\frac{1}{2}, B=-\frac{1}{2}
$$

Method of differences clearly shown
$$
\begin{aligned}
& \begin{array}{l}
\text { Sum }=\frac{1}{2}\left(1-\frac{1}{2 n+1}\right) \\
\quad=\frac{n}{2 n+1} \\
\frac{1}{2(2 n+1)}<0.001 \text { or } \frac{n}{2 n+1}>0.499 \\
1<0.004 n+0.002 \text { or } n>0.998 n+0.499 \\
n>\frac{0.998}{0.004} \text { or } 0.004 n>0.998 \\
n=250
\end{array}
\end{aligned}
$$

 \&

B1, B1F

M1

A1

A1

M1

A1

A1F
\end{tabular} \& 2

3

3 \& | For either A or B |
| :--- |
| For the other |
| AG |
| Condone use of equals sign |
| OE |
| ft if say 0.4999 used |
| If method of trial and improvement used, award full marks for a completely correct solution showing working |

\hline \& Total \& \& 8 \&

\hline
\end{tabular}

MFP2 (cont)

Q	Solution	Marks	Total	Comments
3(a)	$2+3 i$	B1	1	
(b)(i)	$\alpha \beta=13$	B1	1	
(ii)	$\alpha \beta+\beta \gamma+\gamma \alpha=25$	M1		M1A0 for -25 (no ft)
	$\gamma(\alpha+\beta)=12$	A1F		
	$\gamma=3$	A1F	3	ft error in $\alpha \beta$
(iii)	$p=-\sum \alpha=-7$	$\begin{gathered} \text { M1 } \\ \text { A1F } \end{gathered}$		M1 for a correct method for either p or q
	$q=-\alpha \beta \gamma=-39$	A1F	3	ft from previous errors p and q must be real for sign errors in p and q allow M1 but A0
	Alternative for (b)(ii) and (iii):			
(ii)	Attempt at $(z-2+3 i)(z-2-3 i)$	(M1)		
	$z^{2}-4 z+13$	(A1)		
	cubic is $\left(z^{2}-4 z+13\right)(z-3) \therefore \gamma=3$	(A1)	(3)	
(iii)	Multiply out or pick out coefficients	(M1)		
	$p=-7, q=-39$	$\begin{gathered} (\mathrm{A} 1, \\ \mathrm{A} 1) \\ \hline \end{gathered}$	(3)	
	Total		8	
4(a)	Sketch, approximately correct shape	B1		
	Asymptotes at $y= \pm 1$	B1	2	B0 if curve touches asymptotes lines of answer booklet could be used for asymptotes be strict with sketch
(b)	$\text { Use of } \begin{aligned} u & =\frac{\sinh x}{\cosh x} \\ & =\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}} \text { or } \frac{\mathrm{e}^{2 x}-1}{\mathrm{e}^{2 x}+1} \end{aligned}$	M1 A1		
	$u\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)=\mathrm{e}^{x}-\mathrm{e}^{-x}$	M1		M1 for multiplying up
	$\mathrm{e}^{-x}(1+u)=\mathrm{e}^{x}(1-u)$	A1		A1 for factorizing out e's or M1 for attempt at $1+u$ and $1-u$ in terms of e^{x}
	$\mathrm{e}^{2 x}=\frac{1+u}{1-u}$	m1		
	$x=\frac{1}{2} \ln \left(\frac{1+u}{1-u}\right)$	A1	6	AG

MFP2 (cont)

Q	Solution	Marks	Total	Comments
6(a)	Centre $-1-\mathrm{i}$ or $(-1,-1)$ Radius 5	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1F } \end{aligned}$		ft incorrect centre if used
	$\|z+1+\mathrm{i}\|=5 \text { or }\|z-(-1-i)\|=5$	A1F	4	$\mathrm{ft}\|z+1+\mathrm{i}\|=10$ earns M0B1
(b)	4			
	C_{1} correct centre, correct radius	B1F		ft errors in (a) but fit circles need to intersect and C_{1} enclose $(0,0)$
	C_{2} correct centre, correct radius Touching x-axis	$\begin{gathered} \text { B1 } \\ \text { B1F } \end{gathered}$	3	
	Touching x-axis		3	error in plotting centre
(c)	$O_{1} O_{2}=3 \sqrt{5}$	M1A1		allow if circles misplaced but $O_{1} O_{2}$ is still $3 \sqrt{5}$
	Correct length identified	m1		
	Length is $9+3 \sqrt{5}$	$\begin{aligned} & \text { M1 } \\ & \text { A1F } \end{aligned}$	5	$\mathrm{ft} \mathrm{if} r$ is taken as 10
	Total		12	

Q	Solution	Marks	Total	Comments
7(a)(i)	$\frac{\mathrm{d} s}{\mathrm{~d} x}=\sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}}=\sqrt{1+\left(\frac{s}{2}\right)^{2}}$	M1A1		Allow M1 for $s=\int \sqrt{1+\left(\frac{s}{2}\right)^{2}} \mathrm{~d} x$ then $A 1$ for $\frac{d y}{d x}$
	$=\frac{1}{2} \sqrt{4+s^{2}}$	A1	3	AG
	$\int \frac{\mathrm{d} s}{\sqrt{4+s^{2}}}=\int \frac{1}{2} \mathrm{~d} x$	M1		For separation of variables; allow without integral sign
	$\sinh ^{-1} \frac{s}{2}=\frac{1}{2} x+C$	A1		Allow if C is missing
	$C=0$	A1		
	$s=2 \sinh \frac{1}{2} x$			AG if C not mentioned allow $\frac{3}{4}$
				SC incomplete proof of (a)(ii), differentiating
		A1	4	$s=2 \sinh \frac{x}{2}$ to arrive at $\frac{\mathrm{d} s}{\mathrm{~d} x}=\frac{1}{2} \sqrt{4+s^{2}}$ allow M1A1 only $(2 / 4)$
(iii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\sinh \frac{1}{2} x$	M1		
	$y=2 \cosh \frac{1}{2} x+C$	A1		Allow if C is missing
	$C=0$	A1	3	Must be shown to be zero and CAO
(b)	$y^{2}=4\left(1+\sinh ^{2} \frac{x}{2}\right)$	M1		Use of $\cosh ^{2}=1+\sinh ^{2}$
	$=4+s^{2}$	A1	2	AG
	Total		12	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

Mark Scheme

2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk
Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

$\left.\begin{array}{llll}\text { M } & \text { mark is for method } & \\ \hline \mathrm{m} \text { or } \mathrm{dM} & \text { mark is dependent on one or more } \mathrm{M} \text { marks and is for method } \\ \hline \text { A } & \text { mark is dependent on } \mathrm{M} \text { or m marks and is for accuracy }\end{array}\right]$

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP2

Q	Solution	Marks	Total	Comments
1(a)	$\text { LHS }=\frac{1}{4}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}-\frac{1}{4}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)^{2}$ Correct expansion of either square Shown equal to 1	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	AG
(b)(i)	$8 \cosh ^{2} x-3$	B1	1	
(ii)	Sketch of $y=\cosh x$	B1	1	Must cross y-axis above x-axis
(iii)	$\cosh x=(\pm) 1.25$	B1F		OE; ft errors in (b)(i); allow \pm missing
	$x=\ln \left(1.25+\sqrt{1.25^{2}-1}\right)$	M1		
	$=\ln 2$	A1F		
	$\ln \frac{1}{2}$ by symmetry	A1F	4	Accept - $\ln 2$ written straight down
				Alternatively, if solved by using $\mathrm{e}^{2 x}-2.5 \mathrm{e}^{x}+1=0$, allow M1 for $x=\ln \left(\frac{2.5 \pm \sqrt{2.5^{2}-4}}{2}\right)$
	Total		9	
2	y^{\uparrow}			
(a)(i)	Circle	B1		
	Correct centre	B1		correct quadrant; condone (4,-2i)
	Touching y-axis	B1	3	
(ii)	Straight line parallel to x-axis	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		
	through $(0,1)$	B1	3	Assume $(0,1)$ if distance up y-axis is half distance to top of circle; no other shading outside circle
(b)	Shading: inside circle above line	$\begin{aligned} & \text { B1F } \\ & \text { B1F } \end{aligned}$	2	
				Whole question reflected in x-axis loses 2 marks
	Total		8	

MFP2 (cont)

MFP2 (cont)

Q	Solution	Marks	Total	Comments
4(a)	$\frac{\mathrm{d} x}{\mathrm{~d} t}=\sinh 2 t$	B1		
	$\frac{\mathrm{d} y}{\mathrm{~d} t}=2 \cosh t$	B1		
	$\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}=\sinh ^{2} 2 t+4 \cosh ^{2} t$	M1		
	Use of $\sinh 2 t=2 \sinh t \cosh t$	m1		Or other correct formula for double angle
	$=4 \cosh ^{2} t\left(\sinh ^{2} t+1\right)$	A1		For taking out factor
	$=4 \cosh ^{4} t$	A1F	6	ft errors of sign in $\frac{\mathrm{d} x}{\mathrm{~d} t}$ or $\frac{\mathrm{d} y}{\mathrm{~d} t}$
(b)(i)	$S=2 \pi \int_{0}^{1} 2 \sinh t .2 \cosh ^{2} t \mathrm{~d} t$	M1		Using the value obtained in (a)
	$=8 \pi \int_{0}^{1} \sinh t \cdot \cosh ^{2} t \mathrm{~d} t$	A1	2	AG
(ii)	$S=8 \pi\left[\frac{\cosh ^{3} t}{3}\right]_{0}^{1}$	M1		
	$=\frac{8 \pi}{3}\left[\cosh ^{3} 1-1\right]$	A1	2	$\text { OE eg } \frac{\pi}{3}\left(\left(\mathrm{e}+\frac{1}{\mathrm{e}}\right)^{3}-8\right)$
	Total		10	
5(a)(i)	$u_{1}=S_{1}=1^{2} \cdot 2 \cdot 3=6$	B1	1	AG
(ii)	$u_{2}=S_{2}-S_{1}=42$	B1	1	AG
(iii)	$u_{n}=S_{n}-S_{n-1}$	M1		
	$=n^{2}(n+1)(n+2)-(n-1)^{2} n(n+1)$	A1		
	$=n(n+1)(4 n-1)$	A1	3	AG
(b)	$\sum_{r=n+1}^{2 n} u_{r}=S_{2 n}-S_{n}$	M1		
	$=(2 n)^{2}(2 n+1)(2 n+2)-n^{2}(n+1)(n+2)$	A1		
	$=3 n^{2}(n+1)(5 n+2)$	A1	3	AG
	Total		8	

MFP2 (cont)

Q	Solution	Marks	Total	Comments
6(a)	$t=\tan \theta \quad \mathrm{d} t=\sec ^{2} \theta \mathrm{~d} \theta$	B1		OE
	$I=\int \frac{\mathrm{d} t}{\left(9 \cos ^{2} \theta+\sin ^{2} \theta\right) \sec ^{2} \theta}$	M1		OE
	$=\int \frac{\mathrm{d} t}{t^{2}+9}$	A1	3	AG
(b)	$I=\left[\frac{1}{3} \tan ^{-1} \frac{t}{3}\right]_{0}^{\sqrt{3}}$	M1		M1 for $\tan ^{-1}$
	$\frac{1}{3} \tan ^{-1} \frac{\sqrt{3}}{3} \text { or } \frac{1}{3} \tan ^{-1} \frac{1}{\sqrt{3}}$	A1		
	$=\frac{\pi}{18}$	A1	3	AG
	Total		6	
7(a)	Assume true for $n=k$			
	$u_{k+1}=2\left(3 \times 2^{k-1}-1\right)+1$	M1A1		
	$=3 \times 2^{k}-1$	A1		$2^{(k-1)+1}$ not necessarily seen
	True for $n=1$ shown	B1		
	Method of induction clearly expressed	E1	5	Provided all 4 previous marks earned
(b)	$\sum_{r=1}^{n} u_{r}=\sum_{r=1}^{n} 3 \times 2^{r-1}-n$			
	$=3\left(2^{n}-1\right)-n$	M1A1		M1 for summation, ie recognition of a GP
	$=u_{n+1}-(n+2)$	A1	3	AG
	Total		8	

MFP2 (cont)

Q	Solution	Marks	Total	Comments
8(a)(i)	$\left(e^{\frac{2 \pi \mathrm{i}}{7}}\right)^{7}=e^{2 \pi \mathrm{i}}=1$	B1	1	Or $z^{7}=\mathrm{e}^{2 k \pi \mathrm{i}} \quad \mathrm{z}=\mathrm{e}^{\frac{2 k \pi \mathrm{i}}{7}} \quad k=1$
(ii)	Roots are $\omega^{2}, \omega^{3}, \omega^{4}, \omega^{5}, \omega^{6}$	M1A1	2	OE; M1A0 for incomplete set SC B1 for a set of correct roots in terms of $e^{\mathrm{i} \theta}$
(b)	Sum of roots considered $=0$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	$\left\{\text { or } \sum_{r=0}^{6} \omega^{6}=\frac{\omega^{7}-1}{\omega-1}=0\right.$
(c)(i)	$\omega^{2}+\omega^{5}=\mathrm{e}^{\frac{4 \pi \mathrm{i}}{7}}+\mathrm{e}^{\frac{10 \pi \mathrm{i}}{7}}$	M1		
	$=e^{\frac{4 \pi i}{7}}+e^{\frac{-4 \pi i}{7}}$	A1		$\text { Or } \cos \frac{4 \pi}{7}+i \sin \frac{4 \pi}{7}+\cos \frac{4 \pi}{7}-i \sin \frac{4 \pi}{7}$
	$=2 \cos \frac{4 \pi}{7}$	A1	3	AG
(ii)	$\omega+\omega^{6}=2 \cos \frac{2 \pi}{7} ; \quad \omega^{3}+\omega^{4}=2 \cos \frac{6 \pi}{7}$	B1,B1		Allow these marks if seen earlier in the solution
	Using part (b) Result	M1 A1	4	AG
	Total		12	
	TOTAL		75	

General Certificate of Education June 2010

Mathematics
MFP2

Further Pure 2

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
Vor ft or F	follow through from previous		
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
-x EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP2

MFP2 (cont)

MFP2 (cont)

Q	Solution	Marks	Total	Comments
7(a)(i)	$\begin{aligned} & 1+\sqrt{3} i=2 e^{\frac{\pi i}{3}} \\ & 1-i=\sqrt{2} e^{-\frac{\pi i}{4}} \end{aligned}$	$\begin{gathered} \mathrm{B} 1 \\ \mathrm{~B} 1 \mathrm{~B} 1 \end{gathered}$	3	B1 both correct OE
(ii)	$2^{\frac{21}{2}}$ or equivalent single expression Raising and adding powers of e $\frac{17 \pi}{12}$ or equivalent angle	B1F M1 AIF	3	No decimals; must include fractional powers Denominators of angles must be different
	$z=\sqrt[3]{2^{10} \sqrt{2}} \mathrm{e}^{\frac{177 \mathrm{mi}}{36}+\frac{2 k \pi i}{3}}$	M1		
	$\sqrt[3]{2^{10} \sqrt{2}}=8 \sqrt{2}$	B1		CAO
	$\theta=\frac{17 \pi}{36},-\frac{7 \pi}{36},-\frac{31 \pi}{36}$	A2,1F	4	Correct answers outside range: deduct 1 mark only
	Total		10	
	TOTAL		75	

General Certificate of Education (A-level) January 2011

Mathematics

MFP2

(Specification 6360)

Further Pure 2

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 1(a)

(b)(i)

(ii) \& \begin{tabular}{l}

Circle correct centre through (0,0)
$$
\left|z_{1}\right|=8
$$

 \&

B1

B1

B1

B1F

B1F
\end{tabular} \& 3

1

1 \& | ft if circle encloses (0,0) |
| :--- |
| ft if centre misplotted |

\hline \& Total \& \& 5 \&

\hline \multirow[t]{2}{*}{2(a)} \& | $\begin{aligned} & u_{r}-u_{r-1}= \\ & \frac{1}{6} r(r+1)(4 r+11)-\frac{1}{6}(r-1) r(4 r+7) \end{aligned}$ |
| :--- |
| Correct expansion in any form, eg $\begin{aligned} & \frac{1}{6} r\left(4 r^{2}+15 r+11-4 r^{2}-3 r+7\right) \\ & =r(2 r+3) \end{aligned}$ |
| Attempt to use method of differences $\begin{aligned} S_{100} & =u_{100}-u_{0} \\ & =691850 \end{aligned}$ | \& | A1 |
| :--- |
| A1 |
| M1 |
| A1 |
| A1 | \& 3

3 \& AG
CAO

\hline \& Total \& \& 6 \&

\hline 3(a) \& $$
\begin{aligned}
& (1+i)^{2}=2 \mathrm{i} \text { or }(1+\mathrm{i})=\sqrt{2} \mathrm{e}^{\frac{\mathrm{ii}}{4}} \\
& 2 \mathrm{i}(1+\mathrm{i})=2 \mathrm{i}-2
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { B1 }
\end{aligned}
$$

\] \& 2 \& | AG |
| :--- |
| Alternative method: $\begin{aligned} (1+i)^{3} & =1+3 i+3 i^{2}+i^{3} & & \text { B1 } \\ & =2 i-2 & & \text { B1 } \end{aligned}$ |

\hline (b)(i) \& | Substitute $z=1+\mathrm{i}$ |
| :--- |
| Correct expansion $k=-5$ | \& | M1 |
| :--- |
| A1 |
| A1 | \& 3 \& allow for correctly picking out either the real or the imaginary parts

\hline (ii) \& $\beta+\gamma=5+\mathrm{i}-\alpha=4$ \& B1 \& 1 \& AG

\hline \multirow[t]{3}{*}{(iii)} \& $$
\begin{aligned}
& \alpha \beta \gamma=5(1+\mathrm{i}) \\
& \beta \gamma=5
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1F }
\end{gathered}
$$

\] \& \& | allow if sign error |
| :--- |
| ft incorrect k |

\hline \& \& M1 \& \&

\hline \& | Use of formula or $(z-2)^{2}=-1$ $z=2 \pm \mathrm{i}$ |
| :--- |
| NB allow marks for (b) in whatever order they appear | \& \[

$$
\begin{aligned}
& \text { A1F } \\
& \text { A1F }
\end{aligned}
$$
\] \& 5 \& No ft for real roots if error in k

\hline \& Total \& \& 11 \&

\hline
\end{tabular}

MFP2 (cont)

Q	Solution	Marks	Total	Comments
4(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=12 \sinh x-8 \cosh x-1$	B1		The B1 and M1 could be in reverse order if put in terms of e first
	$12 \frac{\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)}{2}-8 \frac{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)}{2}-1=0$	M1		M0 if $\sinh x$ and $\cosh x$ in terms of e^{x} are interchanged
	$2 \mathrm{e}^{2 x}-\mathrm{e}^{x}-10=0$	A1F		ft slips of sign
	$\left(2 \mathrm{e}^{x}-5\right)\left(\mathrm{e}^{x}+2\right)=0$	M1A1F		ft provided quadratic factorises
	$\mathrm{e}^{x} \neq-2$	E1		some indication of rejection needed
	$x=\ln \frac{5}{2} \quad$ one stationary point	A1F	7	Condone $\mathrm{e}^{x}=\frac{5}{2}$ with statement provided quadratic factorises
				Special Case If $\frac{\mathrm{d} y}{\mathrm{~d} x}=12 \sinh x-8 \cosh x \quad$ B0 For substitution in terms of $\mathrm{e}^{x} \quad$ M1 leading to $\mathrm{e}^{2 x}=5$ A1 Then M0
(b)	$\begin{aligned} b & =12 \frac{\left(\frac{5}{2}+\frac{2}{5}\right)}{2}-8 \frac{\left(\frac{5}{2}-\frac{2}{5}\right)}{2}-\ln \frac{5}{2} \\ & =\frac{174}{10}-\frac{84}{10}-\ln \frac{5}{2} \\ & =9-a \end{aligned}$	M1A1F A1 A1	4	for substitution into original equation CAO AG; accept $b=9-a$
	Total		11	
5(a)	$\begin{aligned} \frac{\mathrm{d} u}{\mathrm{~d} x} & =\frac{1}{2}\left(1-x^{2}\right)^{-\frac{1}{2}} \\ & \times(-2 x) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	
(b)	$\int \sin ^{-1} x \mathrm{~d} x=x \sin ^{-1} x-\int \frac{x}{\sqrt{1-x^{2}}} \mathrm{~d} x$	$\begin{gathered} \text { M1 } \\ \text { A1A1 } \end{gathered}$		A1 for each part of the integration by parts
	$\int-\frac{x}{\sqrt{1-x^{2}}} \mathrm{~d} x=\sqrt{1-x^{2}}$ used	A1F		ft sign error in $\frac{\mathrm{d} u}{\mathrm{~d} x}$
	$\frac{\sqrt{3}}{2} \frac{\pi}{3}+\sqrt{1-\frac{3}{4}}-1$	m1		substitution of limits
	$\frac{1}{6} \sqrt{3} \pi-\frac{1}{2}$	A1	6	CAO
	Total		8	

MFP2 (cont)

Q	Solution	Marks	Total	Comments
6(a) (b)	$\frac{\mathrm{d} x}{\mathrm{~d} t}=\sec t-\cos t$ Use of $1-\cos ^{2} t=\sin ^{2} t$ $\frac{\mathrm{d} x}{\mathrm{~d} t}=\sin t \tan t$ $\dot{x}^{2}+\dot{y}^{2}=\sin ^{2} t \tan ^{2} t+\sin ^{2} t$ Use of $1+\tan ^{2} t=\sec ^{2} t$ $\begin{aligned} & \sqrt{\dot{x}^{2}+\dot{y}^{2}}=\tan t \\ & \begin{aligned} \int_{0}^{\frac{\pi}{3}} \tan t \mathrm{~d} t & =[\ln \sec t]_{0}^{\frac{\pi}{3}} \\ & =\ln 2 \end{aligned} \end{aligned}$	$\begin{gathered} \text { B1,B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1A1 } \\ \text { m1 } \\ \text { A1F } \\ \text { A1F } \\ \text { A1 } \end{gathered}$	6	use of FB for sect ; if done from first principles, allow B1 when sect is arrived at AG sign error in $\frac{\mathrm{d} y}{\mathrm{~d} t} \mathrm{~A} 0$ ft sign error in $\frac{\mathrm{d} y}{\mathrm{~d} t}$ ft sign error in $\frac{\mathrm{d} y}{\mathrm{~d} t}$ CAO
	Total		10	
$7 \text { (a) }$ (b)	$\begin{aligned} & \mathrm{f}(k+1)-5 \mathrm{f}(k) \\ & =12^{k+1}+2 \times 5^{k}-5\left(12^{k}+2 \times 5^{k-1}\right) \\ & =12^{k+1}+2 \times 5^{k}-5 \times 12^{k}-2 \times 5^{k} \\ & =12 \times 12^{k}-5 \times 12^{k}=7 \times 12^{k} \end{aligned}$ $\begin{aligned} & \text { Assume } \mathrm{f}(k)=M(7) \\ & \text { Then } \begin{aligned} \mathrm{f}(k+1) & =5 \mathrm{f}(k)+M(7) \\ & =M(7) \\ \mathrm{f}(1)=12+2 & =14=M(7) \end{aligned} \end{aligned}$ Correct inductive process	M1 A1 A1 M1 A1 B1 E1	3	for expansion of bracket $5 \times 5^{k-1}=5^{k}$ used clearly shown Not merely a repetition of part (a) clearly shown (award only if all 3 previous marks earned)
	Total		7	

Q	Solution	Marks	Total	Comments
8(a)(i)	$\begin{aligned} 4(1+\mathrm{i} \sqrt{3}) & =8\left(\frac{1}{2}+\mathrm{i} \frac{\sqrt{3}}{2}\right) \\ & =8 \mathrm{e}^{\frac{\pi i}{3}} \end{aligned}$	M1 A1		for either $4(1+i \sqrt{3})$ or $4(1-i \sqrt{3})$ used If either r or θ is incorrect but the same value in both (i) and (ii) allow A1 but for θ only if it is given as $\frac{\pi}{6}$
(ii)	$4(1-\mathrm{i} \sqrt{3})=8 \mathrm{e}^{\frac{-\pi \mathrm{i}}{3}}$	A1	3	
(b)	$\begin{aligned} & z^{3}-4= \pm \sqrt{-48} \\ & z^{3}=4 \pm 4 \sqrt{3} i \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	taking square root AG
(c)(i)	$z=2 \mathrm{e}^{\frac{\frac{\pi i}{3}+2 k \pi i}{3}} \text { or } z=2 \mathrm{e}^{\frac{-\pi i^{3}}{3}+2 k \pi i} 3$	$\begin{aligned} & \text { B1F } \\ & \text { M1 } \end{aligned}$		for the 2 ; ft incorrect 8 , but no decimals for either, PI
	$\begin{aligned} z & =2 e^{\frac{\pi i}{9}}, 2 \mathrm{e}^{\frac{7 \pi i}{9}}, 2 \mathrm{e}^{\frac{5 \pi i}{9}} \\ & =2 \mathrm{e}^{\frac{-\pi i}{9}}, 2 \mathrm{e}^{\frac{-7 \pi i}{9}}, 2 \mathrm{e}^{\frac{-5 \pi i}{9}} \end{aligned}$	A3,2,1F	5	Allow A1 for any 2 roots not + - each other Allow A2 for any 3 roots not +/- each other Allow A3 for all 6 correct roots Deduct A1 for each incorrect root in the interval; ignore roots outside the interval ft incorrect r
	 Radius 2	B1F		clearly indicated; ft incorrect r allow B1 for 3 correct points condone lines
	Plotting roots	B2,1	3	
(d)(i)	Sum of roots $=0$ as coefficient of $z^{5}=0$	E1	1	OE
(ii)	Use of, say, $\frac{1}{2}\left(e^{\frac{\pi i}{9}}+e^{\frac{-\pi i}{9}}\right)=\cos \frac{\pi}{9}$	M1		
	$\cos \frac{3 \pi}{9}=\frac{1}{2}$ used	A1		
	$\cos \frac{\pi}{9}+\cos \frac{3 \pi}{9}+\cos \frac{5 \pi}{9}+\cos \frac{7 \pi}{9}=\frac{1}{2}$	A1	3	AG
Total			17	
	TOTAL		75	

General Certificate of Education (A-level) June 2011

Mathematics

MFP2

(Specification 6360)

Further Pure 2

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP2 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 3(a)
(b) \& \begin{tabular}{l}
\[
(r+1)!=(r+1) r(r-1)!
\] \\
Result \\
Attempt to use method of differences
\[
\begin{aligned}
\& \sum_{r=1}^{n}\left(r^{2}+r-1\right)(r-1)!=(n+1)!+n!-1!-0! \\
\& (n+1)!=(n+1) n! \\
\& (n+2) n!-2
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
m1 \\
A1
\end{tabular} \& 2

4 \& | AG |
| :--- |
| Must be seen |
| AG |

\hline \& Total \& \& 6 \&

\hline 4(a)(i) \& $$
\begin{aligned}
& \hline \sum \alpha=2 \\
& \sum \alpha \beta=0
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { B1 }
\end{aligned}
$$
\] \& 2 \&

\hline (ii) \& $$
\begin{aligned}
\sum \alpha^{2} & =\left(\sum \alpha\right)^{2}-2 \sum \alpha \beta \\
& =4
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& 2 \& Used. Watch $\sum \alpha=-2$ (M1A0) AG

\hline (iii) \& Clear explanation \& E1 \& 1 \& eg α satisfies the cubic equation since it is a root. Accept $z=\alpha$

\hline (iv) \& $$
\begin{aligned}
\sum \alpha^{3} & =2 \sum \alpha^{2}-3 k \\
& =8-3 k
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& 2 \& \[

$$
\begin{aligned}
& \text { Or } \sum \alpha^{3}=\left(\sum \alpha\right)^{3}-3 \sum \alpha \sum \alpha \beta+3 \alpha \beta \gamma \\
& \text { AG }
\end{aligned}
$$
\]

\hline (b)(i) \& \[
$$
\begin{aligned}
& \alpha^{4}=2 \alpha^{3}-k \alpha \\
& \begin{aligned}
\sum \alpha^{4} & =2 \sum \alpha^{3}-k \sum \alpha \\
& =2(8-3 k)-2 k
\end{aligned}
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 |
| A1 | \& \& \[

$$
\begin{aligned}
& \text { Or } \sum \alpha^{4}=\left(\sum \alpha^{2}\right)^{2}-2\left(\sum \alpha \beta\right)^{2}+4 \alpha \beta \gamma \sum \alpha \\
& \mathrm{ft} \text { on } \sum \alpha=-2
\end{aligned}
$$
\]

\hline \& $$
k=2
$$ \& A1 \& 4 \& AG

\hline (ii) \& $$
\begin{aligned}
& \sum \alpha^{5}=2 \sum \alpha^{4}-k \sum \alpha^{2} \\
& \text { Substitution of values } \\
& =-8
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& 3 \&

\hline \& Total \& \& 14 \&

\hline
\end{tabular}

> General Certificate of Education (A-level) January 2012

Mathematics

MFP2

(Specification 6360)

Further Pure 2

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: $\underline{\text { aqa.org.uk }}$
Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Sor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	 Sketch $y=\sinh x$ Sketch $y=\operatorname{sech} x$: Symmetry about $x=0$ with max point Asymptote $y=0$ Point $(0,1)$ marked or implied $\sinh x=\frac{1}{\cosh x}$ $\sinh 2 x=2$ Use of \ln $x=\frac{1}{2} \ln (2+\sqrt{5})$ or $\frac{1}{2}\left(\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}\right)=2 \quad \mathrm{OE}$ $\mathrm{e}^{4 x}-4 \mathrm{e}^{2 x}-1=0$ Correct use of formula Result	B1 B1 B1 B1 M1 M1 m1 A1 (M1) (M1) (m1) (A1)	4 4 (4)	gradient >0 at $(0,0)$; no asymptotes must not cross x-axis use of double angle formula dependent on previous M2 incorrect $\sinh x, \cosh x$ M0 (no marks) ie multiply by $\mathrm{e}^{2 x}$ and rewrite
	Total		8	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 2(a) \& \begin{tabular}{l}
 \\
Half-line with gradient \(<1\)
\end{tabular} \& B1 \& 1 \& condone a short line, ie it stops at or inside circle \\
\hline (b)(i) \& Circle centre on \(L, x\)-coord 6 indicated touching \(\operatorname{Re} z=0\) not at \((0,0)\) \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& 2 \& not touching Re axis \\
\hline (ii) \& \(y\)-coord of centre is \(2 \sqrt{3}\) or \(\frac{6}{\sqrt{3}}\)
\[
\begin{aligned}
\& z_{0}=6+2 \sqrt{3} i, \\
\& k=6
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
B1F, \\
B1
\end{tabular} \& 3 \& \begin{tabular}{l}
OE; PI \\
ft error in coords of centre
\end{tabular} \\
\hline (iii) \& Point \(z_{1}\) shown
\[
\arg \boldsymbol{x}_{1}=-\frac{1}{6}
\] \& \begin{tabular}{l}
B1 \\
B1
\end{tabular} \& \[
2
\] \& PI \\
\hline \& Total \& \& 8 \& \\
\hline 3(a)

(b) \& | $\begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{1}{2 \tanh x} \\ & \times \operatorname{sech}^{2} x \\ & =\frac{1}{2 \sinh x \cosh x} \\ & =\frac{1}{\sinh 2 x} \end{aligned} \quad \begin{aligned} \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} & =\sqrt{1+\frac{1}{\sinh ^{2} 2 x}} \\ & =\sqrt{\frac{\cosh ^{2} 2 x}{\sinh ^{2} 2 x}} \\ & =\frac{\cosh ^{2 x}}{\sinh 2 x} \end{aligned}$ |
| :--- |
| Integral is $\frac{1}{2} \ln \sinh 2 x$ $\begin{aligned} & \sinh (2 \ln 4)=\frac{255}{32} \quad \sinh (2 \ln 2)=\frac{15}{8} \\ & s=\frac{1}{2} \ln \left(\frac{17}{4}\right) \end{aligned}$ | \& \[

$$
\begin{gathered}
\text { B1 } \\
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { m1 } \\
\text { A1 } \\
\text { M1A1 } \\
\text { B1B1 } \\
\text { A1F }
\end{gathered}
$$
\] \& 4

8 \& | for expressing in terms of $\sinh x$ and $\cosh x$ |
| :--- |
| AG; PI by previous line |
| use of formula; accept $\sqrt{ }$ inserted at any stage |
| relevant use of $\cosh ^{2}-\sinh ^{2}=1$ |
| OE |
| M1 for $\ln \sinh$ |
| PI |
| ft error in $\frac{1}{2}$ |

\hline \& Total \& \& 12 \&

\hline
\end{tabular}

Q	Solution	Marks	Total	Comments
4	Assume result true for $n=k$ $\begin{aligned} & \text { Then } u_{k+1}=\frac{3}{4-\left(\frac{3^{k+1}-3}{3^{k+1}-1}\right)} \\ & =\frac{3\left(3^{k+1}-1\right)}{4\left(3^{k+1}-1\right)-\left(3^{k+1}-3\right)} \\ & 4 \times 3^{k+1}-3^{k+1}=3^{k+2} \\ & u_{k+1}=\frac{3^{k+2}-3}{3^{k+2}-1} \\ & n=1 \quad \frac{3^{2}-3}{3^{2}-1}=\frac{3}{4}=u_{1} \end{aligned}$ Induction proof set out properly	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { E1 } \end{aligned}$	6	clearly shown must have earned previous 5 marks
	Total		6	
5	$\begin{aligned} & \text { Numerator }=\mathrm{e}^{\frac{p \pi \mathrm{i}}{8}} \\ & \text { Denominator }=\mathrm{e}^{\frac{-q \pi \mathrm{i}}{12}} \\ & \text { Fraction }=\mathrm{e}^{\frac{p \pi \mathrm{i}}{8}+\frac{q \pi \mathrm{i}}{12}} \\ & \quad=\mathrm{e}^{\frac{\pi \mathrm{i}}{24}(3 p+2 q)} \\ & \mathrm{i}=\mathrm{e}^{\frac{12 \pi \mathrm{i}}{24}} \\ & 3 p+2 q=12 \\ & p=2, q=3 \end{aligned}$ Alternative 1 $\text { Numerator }=\cos \frac{p \pi}{8}+\mathrm{i} \sin \frac{p \pi}{8}$ $\text { Denominator }=\cos \frac{-q \pi}{12}+\mathrm{i} \sin \frac{-q \pi}{12}$ Fraction $=$ $\begin{aligned} & \quad\left(\cos \frac{p \pi}{8}+\mathrm{i} \sin \frac{p \pi}{8}\right)\left(\cos \frac{q \pi}{12}+\mathrm{i} \sin \frac{q \pi}{12}\right) \\ & =\cos \frac{\pi}{24}(3 p+2 q)+\mathrm{i} \sin \frac{\pi}{24}(3 p+2 q) \\ & =\mathrm{i} \text { if } \cos \frac{\pi}{24}(3 p+2 q)=0 \\ & \quad \text { or } \sin \frac{\pi}{24}(3 p+2 q)=1 \\ & 3 p+2 q=12 \\ & p=2, q=3 \end{aligned}$ Alternative 2 LHS $\cos \frac{p \pi}{8}+\mathrm{i} \sin \frac{p \pi}{8}$ RHS $i \cos \frac{q \pi}{12}+\sin \frac{q \pi}{12}$ $\cos \frac{p \pi}{8}=\sin \frac{q \pi}{12} \text { or } \sin \frac{p \pi}{8}=\cos \frac{q \pi}{12}$ Introduction of $\frac{\pi}{2}$ $\begin{gathered} \frac{p \pi}{8}=\frac{\pi}{2}-\frac{q \pi}{12} \\ 3 p+2 q=12 \\ p=2, q=3 \end{gathered}$	B1 B1 M1 A1 m1 A1F A1 (B1) (B1) (M1) (A1) (m1) (A1F) (A1) (B1) (B1) (M1) (m1) (A1) (A1F) (A1)	7 (7) (7)	allow for attempt to subtract powers OE ft errors of sign or arithmetic slips CAO needs more than just $\cos \frac{q \pi}{12}-\sin \frac{p \pi}{12}$ CAO CAO (correct answers, insufficient working 3/7 only)
	Total		7	

Q	Solution	Marks	Total	Comments
8(a)	$1, \mathrm{e}^{\frac{2 \pi i}{5}}, \mathrm{e}^{\frac{4 \pi i}{5}}, \mathrm{e}^{\frac{-2 \pi i}{5}}, \mathrm{e}^{\frac{-4 \pi i}{5}}$	B1	1	accept e^{0}
(b)	$\frac{z^{5}-1}{z-1}=z^{4}+z^{3}+z^{2}+z+1$	B1		B0 if assumed
	$=\left(z-\mathrm{e}^{\frac{2 \pi i}{5}}\right)\left(z-\mathrm{e}^{\frac{4 \pi i}{5}}\right)\left(z-\mathrm{e}^{\frac{-2 \pi i}{5}}\right)\left(z-\mathrm{e}^{\frac{4 \pi i}{5}}\right)$	M1A1	3	accept if $e^{\frac{6 \pi i}{5}}, e^{\frac{8 \pi i}{5}}$ used here
(c)	$\underset{2 \pi i}{\text { Correct grouping of linear factors }}$	M1		
	$\mathrm{e}^{\frac{3}{5}}+\mathrm{e}^{\frac{-5}{5}}=2 \cos \frac{2 \pi}{5}$	A1		clearly shown
	$\begin{aligned} & \left(z^{2}-2 \cos \frac{2 \pi}{5} z+1\right)\left(z^{2}-2 \cos \frac{4 \pi}{5} z+1\right) \\ & \div z^{2} \text { to give answer } \end{aligned}$	A1 A1	4	AG
(d)	Substitute into LHS to give $w^{2}+w-1$ RHS $\left(w-2 \cos \frac{2 \pi}{5}\right)\left(w-2 \cos \frac{4 \pi}{5}\right)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		
	Solve $w^{2}+w-1=0$			
		A1		
	$\cos \frac{2 \pi}{5}=\frac{\sqrt{5}-1}{4}$	A1		
	with reasons for choice	E1	6	
	Total		14	
	TOTAL		75	

General Certificate of Education (A-level) June 2012

Mathematics

MFP2

(Specification 6360)

Further Pure 2

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP2

MFP2

Q	Solution	Marks	Total	Comments
2(a)				
(i)	Circle Correct centre Touching Im axis	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	3	Convex loop Some indication of position of centre
(ii)	Straight line well to left of centre	B1		$\frac{1}{2} \text { line through }\left(0, \frac{1}{2}\right) \text { B0 }$
	through ($0, \frac{1}{2}$)	B1		Point approximately between 0 and 1
	\perp to line joining ($-2,1$) and (2,0) NB $0 / 3$ for line parallel to x-axis	B1	3	
	$0 / 3$ for line joining the two points $(-2,1)$ and $(2,0)$			
	$0 / 3$ for line joining $(0,0)$ to centre of circle			
(b)	Minor arc indicated	B1F	1	ft incorrect position of line or circle
	Total		7	

MFP2

Q	Solution	Marks	Total	Comments
6(a)	Use of $\cosh 2 x=2 \cosh ^{2} x-1$	M1		or $\cosh 4 x=2 \cosh ^{2} 2 x-1$
	$\text { RHS }=\frac{1}{2} \cosh 2 x+\frac{1}{2} \cosh ^{2} 2 x$	A1		
	$=\frac{1}{4}(1+2 \cosh 2 x+\cosh 4 x)$	A1	3	
	If substituted for both $\cosh 4 x$ and $\cosh 2 x$ in LHS M1 only, until corrected If RHS is put in terms of e^{x} M1 for correct substitution A1 for correct expansion A1 for correct result			
(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \cosh x \sinh x=\sinh 2 x$	M1A1		allow A1 for $1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=1-4 \cosh ^{2} x+4 \cosh ^{4} x$ Incorrect form for $\cosh ^{2} x$ in terms of $\cosh 2 x$ M1 only
	Or $\begin{aligned} & y=\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)^{2}=\frac{\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}}{4} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 \mathrm{e}^{2 x}-2 \mathrm{e}^{x}}{4} \\ & =\sinh 2 x \end{aligned}$	(M1) (A1)		
	$1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=1+\sinh ^{2} 2 x=\cosh ^{2} 2 x$	A1	3	AG
(c)	$S=2 \pi \int_{(0)}^{(\operatorname{nn2)}} \cosh ^{2} x \cosh 2 x \mathrm{~d} x$	M1A1		allow even if limits missing
	$=2 \pi \int_{0}^{\ln 2} \frac{1}{4}(1+2 \cosh 2 x+\cosh 4 x) \mathrm{d} x$	m1		
	$=\frac{2 \pi}{4}\left[x+\frac{2 \sinh 2 x}{2}+\frac{\sinh 4 x}{4}\right]$	A1		Integrated correctly
	Correct use of limits $a=128, b=495$	$\stackrel{\mathrm{m} 1}{\mathrm{~A} 1, \mathrm{~A} 1}$	7	accept correct answers written down with no working. Only one A1 if 2π not used
	Total		13	

MFP2

General Certificate of Education (A-level) January 2013

Mathematics

MFP2

(Specification 6360)

Further Pure 2

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP2

Q	Solution	Marks	Total	Comments
1(a)	$\cosh x=\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)$			or $12 \cosh x=6\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)$
	or $\sinh x=\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)$	M1		or $4 \sinh x=2\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)$
	$\begin{aligned} & 6\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)-2\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right) \\ & 12 \cosh x-4 \sinh x=4 \mathrm{e}^{x}+8 \mathrm{e}^{-x} \end{aligned}$	A1 cso	2	AG
(b)	$4 \mathrm{e}^{x}+8 \mathrm{e}^{-x}=33$			
	$\Rightarrow 4 \mathrm{e}^{2 x}-33 \mathrm{e}^{x}+8 \quad(=0)$	M1		attempt to multiply by e^{x} to form quadratic in e^{x}
	$\Rightarrow\left(\mathrm{e}^{x}-8\right)\left(4 \mathrm{e}^{x}-1\right) \quad(=0)$	m1		factorisation attempt (see below) or correct use of formula
	$\Rightarrow\left(\mathrm{e}^{x}=\right) \quad 8, \quad\left(\mathrm{e}^{x}=\right) \quad \frac{1}{4}$	A1		correct roots
	$(x=) 3 \ln 2$	A1		
	$(x=) \quad-2 \ln 2$	A1	5	
	Total		7	

MFP2 (cont)

MFP2 (cont)

Q	Solution	Marks	Total	Comments
4(a)(i)	$\begin{aligned} & \alpha+\beta+\gamma=5 \\ & \alpha \beta \gamma=4 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	
(ii)	$\begin{aligned} \alpha \beta \gamma^{2}+\alpha \beta^{2} \gamma+\alpha^{2} \beta \gamma= & \alpha \beta \gamma(\alpha+\beta+\gamma) \\ & =5 \times 4=20 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \checkmark \end{gathered}$	2	FT their results from (a)(i)
(b)(i)	If α, β, γ are all real then $\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2} \geqslant 0$ Hence α, β, γ cannot all be real	E1	1	argument must be sound
(ii)	$\alpha \beta+\beta \gamma+\gamma \alpha=k$	B1		$\sum \alpha \beta=k \quad \mathrm{PI}$
	$\begin{aligned} & (\alpha \beta+\beta \gamma+\gamma \alpha)^{2} \\ & =\sum \alpha^{2} \beta^{2}+2\left(\alpha \beta \gamma^{2}+\alpha \beta^{2} \gamma+\alpha^{2} \beta \gamma\right) \end{aligned}$	M1		correct identity for $\left(\sum \alpha \beta\right)^{2}$
	$=-4+2(20)$ $k= \pm 6$	$\begin{gathered} \text { A1 } \checkmark \\ \text { A1 cso } \end{gathered}$	4	substituting their result from (a)(ii) must see $k=$...
	Total		9	

MFP2 (cont)

Q	Solution	Marks	Total	Comments
7(a)(i)	$\begin{aligned} & \mathrm{p}(k+1)-\mathrm{p}(k)= k^{3}+(k+1)^{3}+(k+2)^{3} \\ &-(k-1)^{3}-k^{3}-(k+1)^{3} \\ &=(k+2)^{3}-(k-1)^{3} \end{aligned}$	M1		
	$=k^{3}+6 k^{2}+12 k+8-\left(k^{2}-3 k^{2}+3 k-1\right)$	A1		multiplied out \& correct unsimplified
	$=9 k^{2}+9 k+9=9\left(k^{2}+k+1\right)$ which is a multiple of 9 (since $k^{2}+k+1$ is an integer)	A1cso	3	correct algebra plus statement
(ii)	$\begin{aligned} & p(1)=1+8=9 \\ & \quad \Rightarrow p(1) \text { is a multiple of } 9 \end{aligned}$	B1		result true for $n=1$
	$\begin{gathered} \mathrm{p}(k+1)=\mathrm{p}(k)+9\left(k^{2}+k+1\right) \\ \text { or } \mathrm{p}(k+1)=\mathrm{p}(k)+9 N \end{gathered}$	M1		$\mathrm{p}(k+1)=\ldots$ and result from part (i) considered and mention of divisible by 9
	Assume $\mathrm{p}(k)$ is a multiple of 9 so $p(k)=9 M$, where M is integer $\begin{gathered} \Rightarrow \mathrm{p}(k+1)=9 M+9 N=9(M+N) \\ \Rightarrow \mathrm{p}(k+1) \text { is a multiple of } 9 \end{gathered}$	A1		must have word such as "assume" for A1 convincingly shown
	Result true for $n=1$ therefore true for $n=2, n=3$ etc by induction. (or $\mathrm{p}(n)$ is a multiple of 9 for all integers $n \geqslant 1$)	E1	4	must earn previous 3 marks before E 1 is scored
(b)	$\begin{aligned} \mathrm{p}(n) & =(n-1)^{3}+n^{3}+(n+1)^{3} \\ & =3 n^{3}+6 n \end{aligned}$	B1		need to see this OE as evidence or $3 n\left(n^{2}+2\right)$
	$\mathrm{p}(n)=3 n\left(n^{2}+2\right)$			both of these required
	Therefore $n\left(n^{2}+2\right)$ is a multiple of 3 (for any positive integer n.)	E1	2	plus concluding statement
	Total		9	

Q	Solution	Marks	Total	Comments
8(a)	$r=8$ $\tan ^{-1} \pm \frac{4 \sqrt{3}}{4}$ or $\pm \frac{\pi}{3}$ seen $\Rightarrow \theta=\frac{2 \pi}{3}$	B1 M1 A1	3	or $\frac{\pi}{6}$ marked as angle to Im axis with "vector" in second quadrant on Arg diag $-4+4 \sqrt{3 \mathrm{i}}=8 \mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}}$
(b)(i)	$\text { modulus of each root }=2$	$\begin{gathered} \mathrm{B} 1 \checkmark \\ \mathrm{M} 1 \end{gathered}$		use of De Moivre dividing argument by 3
	$\Rightarrow \theta=-\frac{4 \pi}{9}, \frac{2 \pi}{9}, \frac{8 \pi}{9}$	A2	4	A1 if 3 "correct" values not all in requested interval $2 \mathrm{e}^{-\mathrm{i} \frac{4 \pi}{9}}, 2 \mathrm{e}^{\mathrm{i} \frac{2 \pi}{9}}, 2 \mathrm{e}^{\frac{8 \pi}{9}}$
(ii)	$\text { Area }=3 \times \frac{1}{2} \times P O \times O R \times \sin \frac{2 \pi}{3}$	M1		Correct expression for area of triangle $P Q R$
	$=3 \times \frac{1}{2} \times 2 \times 2 \times \sin \frac{2 \pi}{3}$	A1		correct values of lengths in formula
	$=3 \sqrt{3}$	A1cso	3	
(c)	Sum of roots (of cubic) $=0$ Sum of 3 roots including Im terms	$\begin{aligned} & \text { E1 } \\ & \text { M1 } \end{aligned}$		must be stated explicitly in form $r(\cos \theta+i \sin \theta)$
	$2\left(\cos \frac{(-) 4 \pi}{9}+\cos \frac{2 \pi}{9}+\cos \frac{8 \pi}{9}\right)$	A1		isolating real terms ; correct and with " 2 "
	$\mathrm{e}^{-\mathrm{i} \frac{4 \pi}{9}}=\cos \frac{4 \pi}{9}-\mathrm{i} \sin \frac{4 \pi}{9}$ seen earlier			or $\cos \frac{-4 \pi}{9}=\cos \frac{4 \pi}{9}$ explicitly stated to earn final A1 mark
	$\cos \frac{2 \pi}{9}+\cos \frac{4 \pi}{9}+\cos \frac{8 \pi}{9}=0$	A1cso	4	
	Total		14	
	TOTAL		75	

General Certificate of Education (A-level) June 2013

Mathematics

MFP2

(Specification 6360)

Further Pure 2

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk
Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Лor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0$)$ accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \multirow[t]{3}{*}{2(a)(i)} \& \(\sinh x\) graph \& \& \& \\
\hline \& \& M1 \& \& \[
\begin{aligned}
\& \text { shape - curve through } O \text {, } \\
\& \text { in 1st and } 3^{\text {rd }} \text { quadrants }
\end{aligned}
\] \\
\hline \& \begin{tabular}{l}
 \\
Gradient of \(\sinh x>0\) at origin and \(\cosh x\) minimum at \((0,1)\)
\end{tabular} \& M1

A1 \& 3 \& shape - curve all above x-axis

\hline \multirow[t]{2}{*}{(ii)} \& $\cosh x=0$ has no solutions \& \& \& or $\cosh x>0$ etc

\hline \& and $\sinh x=-k$ has one solution \quad (hence equation has exactly one solution) \& E1 \& 1 \& (since $y=-k$ cuts $y=\sinh x$ exactly once)

\hline \multirow[t]{5}{*}{(b)} \& $$
\frac{\mathrm{d} y}{\mathrm{~d} x}=6 \cosh x+2 \cosh x \sinh x
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& \& | one term correct |
| :--- |
| all correct - may have $6 \cosh x+\sinh 2 x$ |

\hline \& | $(2) \cosh x(3+\sinh x)=0$ |
| :--- |
| therefore C has only one stationary point | \& E1 \checkmark \& \& \[

\left\{$$
\begin{array}{l}
\text { putting }=0, \text { factorising } \\
\text { and concluding statement (may be later) }
\end{array}
$$\right.
\]

\hline \& $\Rightarrow \sinh x=-3$ \& m1 \& \& finding $\sinh x$ from "their" equation

\hline \& $\cosh ^{2} x=10$ \& \& \&

\hline \& $$
y(=-18+10)=-8
$$ \& A1 \& 5 \& answer must be integer so do not accept calculator approximation rounded to -8

\hline \& Total \& \& 9 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 3 \& \begin{tabular}{l}
\[
n=1, \frac{3+1}{3-1}=\frac{4}{2}=2
\] \\
(\(u_{1}=2\) so formula is) true when \(n=1\) \\
Assume formula is true for \(n=k\left({ }^{*}\right)\)
\[
\begin{aligned}
\& \left(u_{k+1}=\right) \frac{5 \frac{3 k+1}{3 k-1}-3}{3 \frac{3 k+1}{3 k-1}-1} \\
\& \left(u_{k+1}=\right) \frac{5(3 k+1)-3(3 k-1)}{3(3 k+1)-(3 k-1)} \\
\& u_{k+1}=\frac{3 k+4}{3 k+2} \text { or } u_{k+1}=\frac{3(k+1)+1}{3(k+1)-1}
\end{aligned}
\] \\
Hence formula is true for \(n=k+1\left({ }^{* *}\right)\) \\
must have lines \(\left({ }^{*}\right) \&\left({ }^{* *}\right)\) and "Result true for \(n=1\) therefore true for \(n=2, n=3\) etc by induction."
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
m1 \\
A1 \\
A1cso \\
E1
\end{tabular} \& 6 \& \begin{tabular}{l}
be convinced they have used \(u_{n}=\frac{3 n+1}{3 n-1}\) \\
clear attempt at RHS of this formula \\
clear attempt to remove "double fraction" \\
\(\frac{6 k+8}{6 k+4}\) \\
must have " \(u_{k+1}=\) " on at least this line \\
must also have earned previous 5 marks before E1 is scored
\end{tabular} \\
\hline \& Total \& \& 6 \& \\
\hline 4(a) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{f}(r)-\mathrm{f}(r-1)= \\
\& r^{2}\left(2 r^{2}-1\right)-(r-1)^{2}\left(2(r-1)^{2}-1\right) \\
\& =2 r^{4}-r^{2}-\left(r^{2}-2 r+1\right)\left(2 r^{2}-4 r+1\right) \\
\& =2 r^{4}-r^{2}-\left(2 r^{4}-8 r^{3}+11 r^{2}-6 r+1\right) \\
\& =8 r^{3}-12 r^{2}+6 r-1 \\
\& =(2 r-1)^{3}
\end{aligned}
\] \\
Attempt to use method of differences
\[
f(2 n)-f(n)
\]
\[
\begin{aligned}
\mathrm{f}(2 n)-\mathrm{f}(n)=4 n^{2} \& \left(8 n^{2}-1\right)-n^{2}\left(2 n^{2}-1\right) \\
\& =30 n^{4}-3 n^{2} \\
\& =3 n^{2}\left(10 n^{2}-1\right)
\end{aligned}
\]
\end{tabular} \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { A1cso } \\
\text { M1 } \\
\text { m1 } \\
\text { A1 } \\
\text { A1cso }
\end{gathered}
\] \& 3

4 \& | condone one slip here attempt to multiply out "their" $\mathrm{f}(r-1)$ $\mathrm{f}(r) \& \mathrm{f}(r-1)$ expanded correctly condone correct unsimplified |
| :--- |
| AG $(2 n)^{2}\left\{2\left(2 n^{2}\right)-1\right\}-n^{2}\left(2 n^{2}-1\right)$ |
| AG be convinced |

\hline \& Total \& \& 7 \&

\hline
\end{tabular}

Q	Solution	Marks	Total	Comments
7(a)(i)	$\begin{aligned} & \frac{\mathrm{d}}{\mathrm{~d} u}\left(2 u \sqrt{1+4 u^{2}}\right)=\frac{8 u^{2}}{\sqrt{1+4 u^{2}}}+2 \sqrt{1+4 u^{2}} \\ & \frac{\mathrm{~d}}{\mathrm{~d} u}\left(\sinh ^{-1} 2 u\right)=\frac{2}{\sqrt{1+4 u^{2}}} \\ & \frac{8 u^{2}+2}{\sqrt{1+4 u^{2}}}=\frac{2\left(1+4 u^{2}\right)}{\sqrt{1+4 u^{2}}}=2 \sqrt{1+4 u^{2}} \\ & \frac{\mathrm{~d}}{\mathrm{~d} u}\left(2 u \sqrt{1+4 u^{2}}+4 \sinh ^{-1} 2 u\right)=4 \sqrt{1+4 u^{2}} \end{aligned}$	M1 A1 B1 A1cso	4	M1 for clear use of product rule (condone one error in one term) correct unsimplified be convinced - must see this line OE all working must be correct (not enough to just say $k=4$)
(ii)	$\begin{array}{r} \frac{1}{\text { "their"k}}\left[2 u \sqrt{1+4 u^{2}}+\sinh ^{-1} 2 u\right]_{0}^{1} \\ =\frac{\sqrt{5}}{2}+\frac{1}{4} \sinh ^{-1} 2 \end{array}$	M1 A1 \checkmark	2	anti differentiation FT "their" k or even use of k
(b)(i)	$\begin{aligned} & y=\frac{1}{2} \cos 4 x \text { and } \frac{\mathrm{d} y}{\mathrm{~d} x}=A \sin 4 x \\ & \text { substituted into } \int K y\left(1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}\right)(\mathrm{d} x) \end{aligned}$	M1		$\frac{\mathrm{d} y}{\mathrm{~d} x}=-2 \sin 4 x$ clear attempt to use formula for CSA
	$\begin{aligned} & (S=) \int_{0}^{\frac{\pi}{8}} 2 \pi \times \frac{1}{2} \cos 4 x \sqrt{1+4 \sin ^{2} 4 x} \mathrm{~d} x \\ & =\text { printed answer (combining } 2 \times \frac{1}{2} \text {) } \end{aligned}$	A1cso	2	AG $\frac{\mathrm{d} y}{\mathrm{~d} x}=-2 \sin 4 x$ and $2 \times \frac{1}{2}$ and $\mathrm{d} x$ must be seen to award A1cso
(ii)	$\begin{gathered} u=\sin 4 x \Rightarrow \mathrm{~d} u=4 \cos 4 x \mathrm{~d} x \\ (S=) \frac{\pi}{4} \int_{0}^{1} \sqrt{1+4 u^{2}}(\mathrm{~d} u) \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		condone $\mathrm{d} u=B \cos 4 x \mathrm{~d} x$ for M1 condone limits seen later
		m1		use of their result from (a)(ii) correctly FT "their" B
	$(S=) \frac{\pi \sqrt{5}}{8}+\frac{\pi}{16} \sinh ^{-1} 2$	A1cso	4	
	Total		12	

A-LEVEL Mathematics

Further Pure 2 - MFP2
Mark scheme

6360
June 2014

Version/Stage: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Vor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
C	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Mark \& Total \& Comment \\
\hline 1 (a) \& \[
\begin{aligned}
\& r=9 \\
\& \qquad \begin{array}{l}
\theta=-\frac{\pi}{2} \\
r=\sqrt{3} \\
\quad \theta=-\frac{5 \pi}{8},-\frac{\pi}{8}, \frac{3 \pi}{8}, \frac{7 \pi}{8} \\
\sqrt{3} \mathrm{e}^{-\frac{\mathrm{i} 5 \pi}{8}}, \sqrt{3} \mathrm{e}^{-\frac{\mathrm{i} \pi}{8}}, \sqrt{3} \mathrm{e}^{\frac{\mathrm{i} 3 \pi}{8}}, \sqrt{3} \mathrm{e}^{\frac{\mathrm{i} 7 \pi}{8}}
\end{array}
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \(\sqrt{ }\) \\
M1 \\
A1 \\
A1 \\
A1
\end{tabular} \& 2

5 \& | condone $-1.57 \ldots$ here only $-9 \mathrm{i}=9 \mathrm{e}^{-\mathrm{i} \frac{\pi}{2}}$ |
| :--- |
| follow through (their $r)^{\frac{1}{4}}$; accept $9^{\frac{1}{4}}$ etc generous |
| two angles correct in correct interval exactly four angles correct $\bmod 2 \pi$ |
| four correct roots in correct interval and in given form; accept $3^{\frac{1}{2}}$ for $\sqrt{3}$ |

\hline \& Total \& \& 7 \&

\hline 1(a)

(b) \& \multicolumn{4}{|l|}{| Accept correct values of r and θ for full marks without candidates actually writing $9 \mathrm{e}^{-\mathrm{i} \frac{\pi}{2}}$. Do not accept angles outside the required interval. |
| :--- |
| Example " $\theta=-\frac{\pi}{2}$ or $\theta=\frac{3 \pi}{2}$ " scores $\mathbf{B 0}$ |
| Condone $r=1.73 \ldots$ for $\mathbf{B 1}$ only. Do not follow through a negative value of r for $\mathbf{B} 1 \sqrt{ } \sqrt{\text {. }}$ |
| Example $\theta=\frac{3 \pi}{8}, \frac{7 \pi}{8}, \frac{11 \pi}{8}, \frac{15 \pi}{8}$ scores M1 A1 A1 |
| Example $\sqrt{3} \mathrm{e}^{-\frac{\mathrm{i} \pi}{8}+\mathrm{i} \frac{\mathrm{i} \tau}{2}}$ scores B1 M1 then $k=-1,0,1,2$ scores A1 A1 with final A1 only earned when four roots are written in given form |}

\hline
\end{tabular}

Q	Solution	Mark	Total	Comment
5(a)	$\left.\left[\begin{array}{c} \left(\mathrm{e}^{\theta}-\mathrm{e}^{-\theta}\right)^{3}=\mathrm{e}^{3 \theta}-3 \mathrm{e}^{\theta}+3 \mathrm{e}^{-\theta}-\mathrm{e}^{-3 \theta} \text { OE } \\ 4 \sinh { }^{3} \theta+3 \sinh \theta= \\ \frac{4}{8}\left(\mathrm{e}^{3 \theta}-3 \mathrm{e}^{\theta}+3 \mathrm{e}^{-\theta}-\mathrm{e}^{-3 \theta}\right)+\frac{1}{2}\left(3 \mathrm{e}^{\theta}-3 \mathrm{e}^{-\theta}\right) \end{array}\right]\right]$	B1 M1 A1	3	correct expansion; terms need not be combined correct expression for $\sinh \theta$ and attempt to expand $\left(\mathrm{e}^{\theta}-\mathrm{e}^{-\theta}\right)^{3}$ AG identity proved
(b)	$\begin{aligned} & 16 \sinh ^{3} \theta+12 \sinh \theta-3=0 \\ & \Rightarrow 4 \sinh 3 \theta-3=0 \end{aligned}$	M1		attempt to use previous result
	$\sinh 3 \theta=\frac{3}{4}$	A1		
	$(3 \theta=) \ln \left(\frac{3}{4}+\sqrt{\frac{9}{16}+1}\right)$	m1		correct \ln form of $\sinh ^{-1}$ for "their" $\frac{3}{4}$
	$\theta=\frac{1}{3} \ln 2$	A1	4	
(c)	$x=\sinh \theta=\frac{1}{2}\left(2^{\frac{1}{3}}-2^{-\frac{1}{3}}\right)$	M1		correctly substituting their expression for θ into $\sinh \theta$ removing any ln terms
	$2^{-\frac{2}{3}}-2^{-\frac{4}{3}}$		2	
	Total		9	
(a)	For M1, must attempt to expand $\left(\mathrm{e}^{\theta}-\mathrm{e}^{-\theta}\right)^{3}$ with at least 3 terms and attempt to add expressions for two terms on LHS. For A1, must see both sides of identity connected with at least trailing equal signs.			
(b)	Withhold final $\mathbf{A 1}$ if answer is given as $x=\frac{1}{3}$ Alternative: $2 \mathrm{e}^{3 \theta}-2 \mathrm{e}^{-3 \theta}-3=0 \Rightarrow 2 \mathrm{e}^{6 \theta}-3 \mathrm{e}$ scores M1 for $\mathrm{e}^{k \theta}=p$ (quite generous) A1 fo then $\mathbf{m} \mathbf{1}$ for correct ft from $\mathrm{e}^{k \theta}=p \Rightarrow k \theta=\ln$	$\ln 2$. ${ }^{3 \theta}-2=$ r $\mathrm{e}^{3 \theta}=$ p and	$\begin{aligned} & s o\left(\mathrm{e}^{3 \theta}\right. \\ & \text { (and pe } \\ & \text { nal A1 } \mathrm{f} \end{aligned}$	$-2)\left(2 \mathrm{e}^{3 \theta}+1\right)=0$ rhaps $\mathrm{e}^{3 \theta}=-0.5$) or $\theta=\frac{1}{3} \ln 2$ and no other solutions

Q	Solution	Mark	Total	Comment
6(a)(i)	$\begin{aligned} & z^{n}=\cos n \theta+\mathrm{i} \sin n \theta \\ & z^{-n}=\cos (-n \theta)+\mathrm{i} \sin (-n \theta) \\ & =\cos n \theta-\mathrm{i} \sin n \theta \\ & \quad z^{n}-\frac{1}{z^{n}}=2 \mathrm{i} \sin n \theta \end{aligned}$	M1 E1 A1	3	$\text { or } \frac{1}{\cos n \theta+\mathrm{i} \sin n \theta} \times \frac{\cos n \theta-\mathrm{i} \sin n \theta}{\cos n \theta-\mathrm{i} \sin n \theta}=\ldots$ shown - not just stated AG
(ii)	$\left(z^{n}+\frac{1}{z^{n}}=\right) 2 \cos n \theta$	B1	1	
(b)(i)	$\left(z-\frac{1}{z}\right)^{2}\left(z+\frac{1}{z}\right)^{2}=z^{4}-2+\frac{1}{z^{4}}$	B1	1	or $z^{4}-2+z^{-4}$
(ii)	$\begin{aligned} (2 \mathrm{i} \sin \theta)^{2}(2 \cos \theta)^{2} & =2 \cos 4 \theta-2 \\ -16 \sin ^{2} \theta \cos ^{2} \theta & =2 \cos 4 \theta-2 \\ 8 \sin ^{2} \theta \cos ^{2} \theta & =1-\cos 4 \theta \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1cso } \end{gathered}$	2	using previous results
(c)	$\begin{aligned} & x=2 \sin \theta \Rightarrow \mathrm{~d} x=2 \cos \theta \mathrm{~d} \theta \\ & \int x^{2} \sqrt{4-x^{2}} \mathrm{~d} x=\int 16 \sin ^{2} \theta \cos ^{2} \theta \mathrm{~d} \theta \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		$x=2 \sin \theta \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} \theta}=k \cos \theta$
	$=\int(2-2 \cos 4 \theta)(\mathrm{d} \theta)$	m1		correct or FT their (b)(ii) result
	$\begin{array}{r} =2 \theta-\frac{1}{2} \sin 4 \theta \\ =\left[\pi-\frac{1}{2} \sin 2 \pi\right]-\left[\frac{\pi}{3}-\frac{1}{2} \sin \frac{2 \pi}{3}\right] \\ =\frac{2 \pi}{3}+\frac{\sqrt{3}}{4} \end{array}$	B1 \checkmark A1cso	5	FT integrand of form $k(1-\cos 4 \theta)$ $x=1 \Rightarrow \theta=\frac{\pi}{6} ; \quad x=2 \Rightarrow \theta=\frac{\pi}{2}$
	Total		12	
(a)(i) (b)(ii) (c)	May score M1 E0 A1 if $z^{-n}=\cos n \theta-\mathrm{i} \sin$ Condone poor use of brackets for M1 but n For M1, must use $2 \mathrm{i} \sin \theta$ and "their" $2 \cos \theta$ For A1cso, must simplify $\sin ^{-1} 1$ correctly i Allow first $\mathbf{A 1}$ for missing $\mathrm{d} \theta$ or incorrect	θ mere t for A1 θ on LH terms of limits use	quoted but con π. /seen, b	and not proved. one poor use of brackets etc when squaring. t withhold final A1cso.

Q	Solution	Mark	Total	Comment
7 (a) (b)	$\begin{aligned} & \left.\begin{array}{l} \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{1+x}{1-x}\right)=\frac{1-x+1+x}{(1-x)^{2}}=\frac{2}{(1-x)^{2}} \\ \begin{array}{rl} \frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{1}{1+u^{2}} \\ & \times \frac{2}{(1-x)^{2}} \\ = & \frac{2}{(1-x)^{2}+(1+x)^{2}}=\frac{1}{1+x^{2}} \\ \text { either } \frac{\mathrm{d}}{\mathrm{~d} x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} \\ \quad \text { or } \int \frac{1}{1+x^{2}} \mathrm{~d} x=\tan ^{-1} x \quad(+c) \end{array} \\ \Rightarrow \tan ^{-1}\left(\frac{1+x}{1-x}\right)=\tan ^{-1} x+C \end{array}\right\} \end{aligned}$ Putting $x=0$ gives $C=\tan ^{-1} 1=\frac{\pi}{4}$ $\Rightarrow \tan ^{-1}\left(\frac{1+x}{1-x}\right)-\tan ^{-1} x=\frac{\pi}{4}$	B1 M1 A1 A1 B1 M1 A1	3	ACF where $u=\frac{1+x}{1-x}$ correct unsimplified AG be convinced AG
	Total		7	
(a) (b)	Alternative $\tan y=\frac{1+x}{1-x}$ $\sec ^{2} y \frac{\mathrm{~d} y}{\mathrm{~d} x} \quad$ M1 $=\frac{2}{(1-x)^{2}} \quad \mathbf{B 1}$ $\left(1+\left(\frac{1+x}{1-x}\right)^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} \quad \mathbf{A 1} \quad$ with final $\mathbf{A 1}$ for proving given result Must see $\frac{\mathrm{d}}{\mathrm{d} x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$ within attempt at part (b) to award B1			

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Mark \& Total \& Comment

\hline 8(a) \& $$
\begin{aligned}
& y=2(x-1)^{\frac{1}{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=(x-1)^{-\frac{1}{2}} \\
& 1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=1+\frac{1}{x-1} \\
& (s=) \int_{(2)}^{(9)} \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}}(\mathrm{~d} x) \quad(=) \\
& \int_{2}^{9} \sqrt{\frac{x}{x-1}} \mathrm{~d} x
\end{aligned}
$$ \& B1
M1

A1 \& 3 \& | ft their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ $s=\int_{2}^{9} \sqrt{1+\frac{1}{x-1}} \mathrm{~d} x$ |
| :--- |
| (be convinced) |
| AG (must have limits \& $\mathrm{d} x$ on final line) |

\hline (b)(i) \& $$
\begin{aligned}
& \cosh ^{-1} 3=\ln (3+\sqrt{8}) \\
& (1+\sqrt{2})^{2}=3+2 \sqrt{2}=3+\sqrt{8} \\
& \cosh ^{-1} 3=\ln (1+\sqrt{2})^{2}=2 \ln (1+\sqrt{2})
\end{aligned}
$$ \& M1

A1 \& 2 \& | need to see this line $O E$ |
| :--- |
| AG (be convinced) |

\hline \multirow[t]{6}{*}{(ii)} \& $$
x=\cosh ^{2} \theta \Rightarrow \mathrm{~d} x=2 \cosh \theta \sinh \theta \mathrm{~d} \theta
$$ \& M1 \& \& \[

\frac{\mathrm{d} x}{\mathrm{~d} \theta}=k \cosh \theta \sinh \theta \mathbf{O E}
\]

\hline \& $$
(s=) \int \frac{\cosh \theta}{\sinh \theta} 2 \cosh \theta \sinh \theta \mathrm{~d} \theta
$$ \& A1 \& \& including $\mathrm{d} \theta$ on this or later line

\hline \& $2 \cosh ^{2} \theta=1+\cosh 2 \theta \quad$ OE \& B1 \& \& double angle formula or $\frac{1}{2}\left(\mathrm{e}^{2 \theta}+2+\mathrm{e}^{-2 \theta}\right)$

\hline \& $$
(s=) \theta+\frac{1}{2} \sinh 2 \theta
$$ \& A1 \& \& \[

or\left(\frac{1}{4} \mathrm{e}^{2 \theta}+\theta-\frac{1}{4} \mathrm{e}^{-2 \theta}\right)
\]

\hline \& $$
\cosh ^{-1} 3+\frac{1}{2} \sinh \left(2 \cosh ^{-1} 3\right)
$$ \& m1 \& \& correct use of correct limits

\hline \& \[
$$
\begin{aligned}
& \left.-\cosh ^{-1} \sqrt{2}-\frac{1}{2} \sinh \left(2 \cosh ^{-1} \sqrt{2}\right)\right] \\
& (s=2 \ln (1+\sqrt{2})-\ln (1+\sqrt{2})+6 \sqrt{2}-\sqrt{2} \\
& =5 \sqrt{2}+\ln (1+\sqrt{2})
\end{aligned}
$$

\] \& A1 \& 6 \& | must see this line OE |
| :--- |
| partial AG (be convinced) |

\hline \& Total \& \& 11 \&

\hline \& TOTAL \& \& 75 \&

\hline (b)(i) \& \multicolumn{4}{|l|}{SC1 for

$$
\cosh (2 \ln (1+\sqrt{2}))=\frac{1}{2}\left((1+\sqrt{2})^{2}+(1+\sqrt{2})^{-2}\right)=\frac{1}{2}(3+2 \sqrt{2}+3-2 \sqrt{2})=3 \Rightarrow \cosh ^{-1} 3=2 \ln (1+\sqrt{2})
$$}

\hline
\end{tabular}

AQA

A-LEVEL

Mathematics

Further Pure 2 - MFP2
Mark scheme

6360
June 2015

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark orft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment
(a) (b)	$\begin{aligned} & r+1=A(r+2)+B \text { or } \\ & 1=\frac{A(r+2)}{r+1}+\frac{B}{r+1} \\ & \text { either } A=1 \text { or } B=-1 \\ & \frac{1}{(r+2) r!}=\frac{1}{(r+1)!}-\frac{1}{(r+2)!} \\ & \frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+\ldots \\ & \frac{1}{(n+1)!}-\frac{1}{(n+2)!} \\ & \text { Sum }=\frac{1}{2}-\frac{1}{(n+2)!} \end{aligned}$	M1 A1 A1 M1 A1		OE with factorials removed correctly obtained allow if seen in part (b) use of their result from part (a) at least twice must simplify 2 ! and must have scored at least M1 A1 in part (a)
	Total		5	
(a)	Alternative Method Substituting two values of r to obtain two correct equations in A and B with factorials evaluated correctly $r=0 \Rightarrow \frac{1}{2}=A+\frac{B}{2} \quad ; r=1 \Rightarrow \frac{1}{3}=\frac{A}{2}+\frac{B}{6} \quad$ earns $\mathbf{M 1}$ then A1, A1 as in main scheme NMS $\frac{1}{(r+1)!}-\frac{1}{(r+2)!} \quad$ earns 3 marks. However, using an incorrect expression resulting from poor algebra such as $1=A(r+2)!+B(r+1)!$ with candidate often fluking $A=1, B=-1$ scores M0 ie zero marks which you should denote as FIW These candidates can then score a maximum of M1 in part (b). ISW for incorrect simplification after correct answer seen			

Q2	Solution	Mark	Total	Comment
(a)	 Graph roughly correct through O	M1		condone infinite gradient at O for M1
	Correct behaviour as $x \rightarrow \pm \infty \& \operatorname{grad}$ at O Asymptotes have equations $y=1 \& y=-1$	A1 B1	3	must state equations
(b)	$\operatorname{sech} x=\frac{2}{\mathrm{e}^{x}+\mathrm{e}^{-x}} ; \tanh x=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}$	B1		both correct ACF or correct squares of these expressions seen
	$\begin{aligned} & \left(\operatorname{sech}^{2} x+\tanh ^{2} x=\right) \frac{2^{2}+\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)^{2}}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}} \\ & \operatorname{sech}^{2} x+\tanh ^{2} x=\frac{\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}}{\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}}=1 \end{aligned}$	M1 A1	3	attempt to combine their squared terms with correct single denominator AG valid proof convincingly shown to equal 1 including LHS seen
(c)	$\begin{aligned} & 6\left(1-\tanh ^{2} x\right)=4+\tanh x \\ & \quad 6 \tanh ^{2} x+\tanh x-2 \quad(=0) \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \end{gathered}$		correct use of identity from part (b) forming quadratic in $\tanh x$
	$\tanh x=\frac{1}{2}, \quad \tanh x=-\frac{2}{3}$	A1		obtained from correct quadratic
	$\tanh x=k \Rightarrow x=\frac{1}{2} \ln \left(\frac{1+k}{1-k}\right)$	A1F		FT a value of k provided $\|k\|<1$
	$x=\frac{1}{2} \ln 3 \quad, \quad x=\frac{1}{2} \ln \frac{1}{5}$	A1	5	both solutions correct and no others any equivalent form involving \ln
	Total		11	

(a) Actual asymptotes need not be shown, but if asymptotes are drawn then curve should not cross them for A1. Gradient should not be infinite at O for A1.
(b) Condone trailing equal signs up to final line provided " $\operatorname{sech}^{2} x+\tanh ^{2} x=$ " is seen on previous line for A1 Denominator may be $\mathrm{e}^{4 x}+4 \mathrm{e}^{2 x}+6+\mathrm{e}^{4 x}+4 \mathrm{e}^{-2 x}+\mathrm{e}^{-4 x}$ etc for $\mathbf{M 1}$ and $\mathbf{A 1}$
Accept $\operatorname{sech}^{2} x+\tanh ^{2} x=\frac{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}=1$ for $\mathbf{A 1}$
Alternative : $\left(\frac{1}{\cosh ^{2} x}+\frac{\sinh ^{2} x}{\cosh ^{2} x}=\right) \frac{1+\left(\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)\right)^{2}}{\left(\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)\right)^{2}}$ scores B1 M1
and then A1 for $\operatorname{sech}^{2} x+\tanh ^{2} x=\frac{\frac{1}{4} \mathrm{e}^{2 x}+\frac{1}{4} \mathrm{e}^{-2 x}+\frac{1}{2}}{\frac{1}{4} \mathrm{e}^{2 x}+\frac{1}{2}+\frac{1}{4} \mathrm{e}^{-2 x}}=1,($ all like terms combined in any order $)$.

Q4	Solution	Mark	Total	Comment
(a)	$\mathrm{f}(k+1)=2^{4 k+7}+3^{3 k+4}$	M1		
	convincingly showing $2^{4 k+7}=16 \times 2^{4 k+3}$ $\begin{aligned} & \mathrm{f}(\mathrm{k}+1)-16 \mathrm{f}(\mathrm{k}) \\ & \quad=(81-16 \times 3) \times 3^{3 k} \end{aligned}$	E1		must see $16=2^{4} \mathrm{OE}$
	$=33 \times 3^{3 k}$	A1	3	
(b)	$f(1)=209$ therefore $f(1)$ is a multiple of 11	B1		$\mathrm{f}(1)=209=11 \times 19$ or $209 \div 11=19$ etc therefore true when $n=1$
	Assume $\mathrm{f}(k)$ is a multiple of $11\left(^{*}\right)$ $\begin{aligned} \mathrm{f}(k+1)= & 16 \mathrm{f}(k)+33 \times 3^{3 k} \\ & =11 M+11 N=11(M+N) \end{aligned}$ Therefore $\mathrm{f}(k+1)$ is a multiple of 11	M1 A1		attempt at $\mathrm{f}(k+1)=\ldots$ using their result from part (a) where M and N are integers
	Since $f(1)$ is multiple of 11 then $f(2), f(3), \ldots$ are multiples of 11 by induction (or is a multiple of 11 for all integers $n \geq 1$)	E1	4	must earn previous 3 marks and have (*) before E1 can be awarded
	Total		7	
(a)	It is possible to score M1 E0 A1			
(b)	Withhold E1 for conclusion such as "a multiple of 11 for all $n \geq 1$ " or poor notation, etc			

Q5	Solution	Mark	Total	Comment
(a)	 Straight line Through midpoint of $O P, P$ correct	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	3	Ignore the line $O P$ drawn in full or circles drawn as part of construction for locus L. P represents $2-4 i$
(b)(i)	$\begin{aligned} & (x-2)^{2}+(y+4)^{2}=x^{2}+y^{2} \\ & 2 y-x+5=0 \\ & A(5,0) \quad \& \quad B(0,-2.5) \end{aligned}$	M1 A1 A1		may have $5+0 \mathrm{i}$ and $0-2.5 \mathrm{i}$
	$C\left(\frac{5}{2},-\frac{5}{4}\right) \Rightarrow \text { complex num }=\frac{5}{2}-\frac{5}{4} \mathrm{i}$	A1	4	
	either $\quad \alpha=\frac{5}{2}-\frac{5}{4} \mathrm{i}$ or $k=\frac{5 \sqrt{5}}{4}$	M1		allow statement with correct value for centre or radius of circle
	$\left\|z-\frac{5}{2}+\frac{5}{4} i\right\|=\frac{5 \sqrt{5}}{4}$		2	must have exact surd form
	Total		9	
(a)	Withhold the final $\mathbf{A 1}$ (if 3 marks earned) if the straight line does not go beyond the $\operatorname{Re}(\mathrm{z})$ axis and negative $\operatorname{Im}(z)$ axis. The two $\mathbf{A 1}$ marks can be awarded independently.			
(b)(i)	Alternative 1: $\operatorname{grad} O P=-2 \Rightarrow \operatorname{grad} L=0.5 \mathbf{M 1} ; y+2=\frac{1}{2}(x-1)$ OE A1 then A1, A1 as per scheme Alternative 2: substituting $z=x$ (or a) then $z=\mathrm{iy}$ (or ib) into given locus equation Both $(x-2)^{2}+4^{2}=x^{2}$ and $2^{2}+(y+4)^{2}=y^{2}$ M1; $4-4 x+16=0$ and $4+8 y+16=0$ OE for A1 then A1, A1 as per scheme.			

Q7	Solution	Mark	Total	Comment
(a)	$\begin{aligned} & \alpha \beta+\beta \gamma+\gamma \alpha=0 \\ & \alpha \beta \gamma=-\frac{4}{27} \end{aligned}$	B1 B1	2	
(b)(i)	$\alpha \beta+\alpha \beta+\beta^{2}=0 ; \alpha \beta^{2}=-\frac{4}{27}$	B1		May use γ instead of β throughout (b)(i)
	$\alpha^{3}=-\frac{1}{27} \quad \text { or } \quad \beta^{3}=\frac{8}{27}$	M1		Clear attempt to eliminate either α or β from "their" equations correct
	either $\alpha=-\frac{1}{3}$ or $\beta=\frac{2}{3}$	A1		
	$\alpha=-\frac{1}{3}, \beta=\frac{2}{3}, \gamma=\frac{2}{3}$	A1	5	all 3 roots clearly stated
(ii)	$\left(\sum \alpha=1=-\frac{k}{27} \Rightarrow\right) k=-27$	B1	1	or substituting correct root into equation
(c)(i)	$\alpha^{2}=-2 \mathrm{i}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	
(ii)	$27(-2-2 i)-2 i k+4=0$	M1		correctly substituting "their" $\alpha^{2}=-2 \mathrm{i}$ and "their" $\alpha^{3}=-2-2 \mathrm{i}$
	$k=-27+25 i$	A1	2	
(d)	$y=\frac{1}{z}+1 \Rightarrow z=\frac{1}{y-1}$	B1		may use any letter instead of y
	$\frac{27}{(y-1)^{3}}-\frac{12}{(y-1)^{2}}+4=0$	M1		sub their z into cubic equation
	$27-12(y-1)+4(y-1)^{3}=0$	A1		removing denominators correctly
	$27-12 y+12+4\left(y^{3}-3 y^{2}+3 y-1\right)=0$	A1		correct and ($y-1)^{3}$ expanded correctly
	$4 y^{3}-12 y^{2}+35=0$	A1	5	
	Alternative: $\sum \alpha^{\prime}=3+\frac{\alpha \beta+\beta \gamma+\gamma \alpha}{\alpha \beta \gamma}=3$	(B1)		sum of new roots $=3$
	$\sum \alpha^{\prime} \beta^{\prime}=3+\frac{2(\alpha \beta+\beta \gamma+\gamma \alpha)+\alpha+\beta+\gamma}{\alpha \beta \gamma}$			M1 for either of the other two formulae correct in terms of $\alpha \beta \gamma, \alpha \beta+\beta \gamma+\gamma \alpha$ and
	$=0$	(A1)		$\alpha+\beta+\gamma$
	$\Pi=1+\frac{\alpha \beta+\beta \gamma+\gamma \alpha+1+\alpha+\beta+\gamma}{\alpha \beta \gamma}$			
	$=\underline{-35}$	(A1)		
	$4 y^{3}-12 y^{2}+35=0$		(5)	may use any letter instead of y
	Total		17	

[^0]: Set and published by the Assessment and Qualifications Alliance.

[^1]: Set and published by the Assessment and Qualifications Alliance.

[^2]: The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334) Registered address: AQA, Devas Street, Manchester M15 6EX

[^3]: Set and published by the Assessment and Qualifications Alliance.

