AQA Maths Further Pure 2 Mark Scheme Pack 2006-2015

Q U A L I F I C A T I O N S A L L I A N C E

General Certificate of Education

Mathematics 6360

MFP2 Further Pure 2

Mark Scheme

2006 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and	is for accuracy				
В	mark is independent of M or m marks and	d is for method	and accuracy			
E	mark is for explanation					
\sqrt{or} ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

NIFFZ				
Q	Solution	Marks	Total	Comments
1(a)	$\frac{1}{r^2} - \frac{1}{(r+1)^2} = \frac{(r+1)^2 - r^2}{r^2 (r+1)^2}$	M1		
	$=\frac{2r+1}{r^{2}(r+1)^{2}}$	A1	2	AG
(b)	$\frac{3}{1^2 \times 2^2} = \frac{1}{1^2} - \frac{1}{2^2}$			
	$\frac{5}{2^2 \times 3^2} = \frac{1}{2^2} - \frac{1}{3^2}$			
	$\frac{7}{3^2 \times 4^2} = \frac{1}{3^2} - \frac{1}{4^2}$	M1A1		A1 for at least 3 lines
	$\frac{2n+1}{n^2(n+1)^2} = \frac{1}{n^2} - \frac{1}{(n+1)^2}$			
	Clear cancellation	M1		
	$1 - \frac{1}{\left(n+1\right)^2}$	A1F	4	
	Total		6	
2(a)	p = -4	B1		
	$(\alpha + \beta + \gamma)^2 = \sum \alpha^2 + 2\sum \alpha\beta$	M1		
	$16 = 20 + 2\sum \alpha \beta$	A 1		
	$\sum \alpha \beta = -2$	A1F		
	q = -2	A1F	5	
(b)	3-i is a root	B1	U	
	Third root is -2	B1F		
	$\alpha\beta\gamma = (3+i)(3-i)(-2)$	M1		
	=-20	Δ1F		Real $\alpha\beta\gamma$
	<i>r</i> = +20	A1F	5	Real r
	Alternative to (b)	N # 1		
	Substitute $3 + 1$ into equation $(2 + i)^2 = 2 + C$	MI R1		
	(3+1) = 8+61 $(3+i)^3 = 18+26i$	B1		
	$(3+1) = 10 \pm 201$ r = 20	A210		Provided r is real
	Total	112,1,0	10	

	/ Colution	Mault	Tatal	Commonto
Q	Solution	Marks	Iotal	Comments
3 (a)	$\frac{1+i}{1-i} = \frac{(1+i)^2}{1-i^2} = i$	M1A1	2	AG
(b)	$ z_2 = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1 = z_1 $	M1A1	2	
(c)	<i>r</i> = 1	B1		PI
	$\theta = \frac{1}{2}\pi, \ \frac{1}{3}\pi$	B1B1	3	Deduct 1 mark if extra solutions
(d)	$z_1 + z_1$			
	$\frac{\frac{1}{2}/3}{\frac{1}{2}}$	B2,1F	2	Positions of the 3 points relative to each other, must be approximately correct
(e)	$\operatorname{Arg}(z_1 + z_2) = \frac{5}{12}\pi$	B1		Clearly shown
	$\tan\frac{5}{12}\pi = \frac{1 + \frac{1}{2}\sqrt{3}}{\frac{1}{2}}$	M1		Allow if BO earned
	$=2+\sqrt{3}$	A1	3	AG must earn BO for this
	Total		12	

Q	Solution	Marks	Total	Comments
4(a)	Assume result true for $n = k$			
	$\sum_{r=1}^{n} (r+1)2^{r-1} = k2^k$			
	$\sum_{r=1}^{k+1} (r+1)2^{r-1} = k2^k + (k+2)2^k$	M1A1		
	$=2^{k}\left(k+k+2\right)$	ml		
	$=2^{k}\left(2k+2\right)$			
	$=2^{k+1}(k+1)$	A1		
	$n=1$ $2 \times 2^0 = 2 = 1 \times 2^1$	B1		
	$P_k \Rightarrow P_{k+1}$ and P_1 is true	E1	6	Provided previous 5 marks earned
(b)	$\sum_{r=1}^{2n} (r+1)2^{r-1} - \sum_{r=1}^{n} (r+1)2^{r-1}$	M1		Sensible attempt at the difference between 2 series
	$=2n\ 2^{2n}-n2^n$	A1		
	$= n \left(2^{n+1} - 1 \right) 2^n$	A1	3	AG
	Total		9	

MFP2 (cont)				
Q	Solution	N	Marks	Total	Comments
5(a)			B1 B1 B1	3	Circle Correct centre Touching both axes
(b)	$ z \max = OK$		M1		Accept $\sqrt{4^2 + 4^2} + 4$ as a method
	$=\sqrt{4^2+4^2}+4$		A1F		Follow through circle in incorrect position
	$=4\left(\sqrt{2}+1\right)$		A1F	3	AG
(c)	Correct position of z , ie L		M1		
	$a = -\left(4 - 4\cos\frac{1}{6}\pi\right)$				
	$= -\left(4 - 2\sqrt{3}\right)$		A1F		Follow through circle in incorrect position
	$b=4+4\sin\frac{1}{6}\pi=6$		A1F	3	
		Total		9	

Q	Solution	Marks	Total	Comments
6(a)(i)	$z + \frac{1}{z} = \cos\theta + i\sin\theta + i000$			Or $z + \frac{1}{z} = e^{i\theta} + e^{-i\theta}$
	$\cos(-\theta) + i\sin(-\theta)$	M1		2
	$=2\cos\theta$	A1	2	AG
(ii)	$z^2 + \frac{1}{z^2} = \cos 2\theta + i \sin 2\theta$			
	$+\cos(-2\theta)+i\sin(-2\theta)$	M1		
	$=2\cos 2\theta$	A1	2	OE
(iii)	$z^2 - z + 2 - \frac{1}{z} + \frac{1}{z^2}$			
	$= 2\cos 2\theta - 2\cos \theta + 2$	M1		
	Use of $\cos 2\theta = 2\cos^2 \theta - 1$	m1		
	$=4\cos^2\theta-2\cos\theta$	A1	3	AG
(b)	$z + \frac{1}{z} = 0 \qquad \qquad z = \pm \mathrm{i}$	M1A1		
	1 . 2			Alternative:
	$\begin{array}{ccc} z + - = 1 \\ z \end{array} \qquad \begin{array}{c} z^2 - z + 1 = 0 \end{array}$	M1A1		$\cos\theta = 0$ $\theta = \pm \frac{1}{2}\pi$ M1
	_			$z = \pm i$ A1
	$z = \frac{1 \pm i\sqrt{3}}{2}$	A1F	5	$\cos\theta = \frac{1}{2}$ $\theta = \pm \frac{1}{3}\pi$ M1
	Accept solution to (b) if done otherwise			$z = e^{\pm \frac{1}{3}\pi i} = \frac{1}{2} (1 \pm i\sqrt{3})$ A1 A1
	Alternative			2
	If $\theta = +\frac{1}{2}\pi$ $\theta = \frac{1}{3}\pi$	M1		
	$z = i z = \frac{1 + \sqrt{3}i}{2}$	A1		
	Or any correct z values of θ	M1		
	Any 2 correct answers	A1 B1		
	Total		12	

MFP2 (cont)				
Q	Solution	Marks	Total	Comments
7(a)(i)	$2\left(\frac{e^{\theta} - e^{-\theta}}{2}\right)\left(\frac{e^{\theta} + e^{-\theta}}{2}\right)$			
	$=\frac{e^{2\theta}-e^{-2\theta}}{2}=\sinh 2\theta$	M1A1	2	AG
(ii)	$\left(\frac{e^{\theta} - e^{-\theta}}{2}\right)^2 + \left(\frac{e^{\theta} + e^{-\theta}}{2}\right)^2$	M1		
	$=\frac{e^{2\theta}-2+e^{-2\theta}+e^{2\theta}+2+e^{-2\theta}}{4}$ $=\cosh 2\theta$	A1	3	AG
	0001120	711	5	
(b)(i)	$\dot{x} = 3\cosh^2\theta\sinh\theta''$	M1A1		Allow M1 for reasonable attempt at differentiation, but M0 for putting in terms of $e^{k\theta}$ or sinh 3 θ unless real
	2			progress made towards $x^2 + y^2$
	$\dot{y} = 3\sinh^2\theta\cosh\theta$	Al		Allow this M1 if not squared out, must be clear sum in question is $\dot{x}^2 + \dot{y}^2$
	$\dot{x}^2 + \dot{y}^2 = 9\cosh^4\theta\sinh^2\theta$			
	$+9 \sinh^4 \theta \cosh^2 \theta$	M1		
				AG
	$=9\sinh^2\theta\cosh^2\theta\left(\cosh^2\theta+\sinh^2\theta\right)$	A1		Accept $\int_{-\infty}^{1} \sqrt{\frac{9}{-\sinh^2 2\theta} \cosh 2\theta} d\theta$
				$J_0 \bigvee 4$ but limits must appear somewhere
	$=\frac{9}{4}\sinh^2 2\theta \cosh 2\theta$	A1	6	AG
(ii)	$S = \int_0^1 \frac{3}{2} \sinh 2\theta \sqrt{\cosh 2\theta} \mathrm{d}\theta$	M1		
	$u = \cosh 2\theta$ $du = 2 \sinh 2\theta d\theta$	M1A1		
	$\int 3 \frac{1}{2}$, $3 2 \frac{3}{2}$			
	$I = \int \frac{-u^2}{4} \mathrm{d} u = \frac{-x}{4} \times \frac{-u^2}{3}$	AIF		
	$S = \left\{ \frac{1}{2} (\cosh 2\theta)^{\frac{3}{2}} \right\}_{0}^{1}$	A1F		
	$=\frac{1}{2}\left\{\left(\cosh 2\right)^{\frac{3}{2}}-1\right\}$	A1	6	AG
	Total		17	
	TOTAL		75	

Q U A L I F I C A T I O N S A L L I A N C E

General Certificate of Education

Mathematics 6360

MFP2 Further Pure 2

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and	d is for method	and accuracy			
E	mark is for explanation					
\sqrt{or} ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	с	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	$r^{2} + r - 1 = A(r^{2} + r) + B$	M1		Any correct method
	A = 1, B = -1	A1		
		A1F	3	ft B if incorrect A and vice versa $\frac{1}{2}$
				Or $\frac{r^2 + r - 1}{r^2 + r} = 1 - \frac{1}{r(r+1)}$ B1
				$=1 - \left(\frac{1}{r} - \frac{1}{r+1}\right) $ M1A1
(b)	$r = 1$ $1 - \frac{1}{1} + \frac{1}{2}$			
	$r = 2$ $1 - \frac{1}{2} + \frac{1}{2}$	M1		Do not allow M1 if merely
	/2 /3			$\sum \frac{1}{r} - \sum \frac{1}{r+1}$ is summed
	$r = 99 1 - \frac{1}{99} + \frac{1}{100}$	A1F		A1 for suitable (3 at least) number of rows
	$Sum = 98 + \frac{1}{100}$	m1		Must have 98 or 99
	= 98.01	A1F	4	OE Allow correct answer with no working 4 marks
	Total		7	
2(a)	$\dot{x} = 1 - t^2, \dot{y} = 2t$	B1		
	$\dot{x}^2 + \dot{y}^2 = \left(1 - t^2\right)^2 + 4t^2$	M1		
	$=\left(1+t^2\right)^2$	A1	3	AG; must be intermediate line
(b)	$S = 2\pi \int_{1}^{2} (1 + t^2) t^2 dt$	M1A1		Must be correct substitutions for M1
	$=2\pi \left[\frac{t^{3}}{3}+\frac{t^{5}}{5}\right]_{1}^{2}$	m1		Allow if one term integrated correctly
	$=2\pi\left[\frac{8}{3}+\frac{32}{5}-\frac{1}{3}-\frac{1}{5}\right]$	A1F		Any form
	$=\frac{256\pi}{15}$	A1F	5	
	Total		8	

MFP2 (cont)				
Q	Solution	Marks	Total	Comments
3(a)(i)	$\frac{e^{k} + e^{-k}}{2} - \frac{3(e^{k} - e^{-k})}{2} = -1$	M1		Allow if 2's are missing or if coshx and sinhx interchanged
	$-2e^k + 4e^{-k} = -2$	A1		
	$e^{2k} - e^k - 2 = 0$	A1	3	AG Condone <i>x</i> instead of <i>k</i>
(ii)	$\left(\mathrm{e}^{k}+1\right)\left(\mathrm{e}^{k}-2\right)=0$	M1		
	$e^k \neq -1$	E1		Must state something to earn E1. Do not
	e ^{<i>k</i>} = 2	A1		accept ignoring or crossing out.
	$k = \ln 2$	A1F	4	
(b)(i)	$\cosh x = 3\sinh x$ or in terms of e^x	M1		
	$ tanh x = \frac{1}{3} \text{ or } 2e^x = 4e^{-x} $	A1		
	$x = \frac{1}{2} \ln \left(\frac{1 + \frac{1}{3}}{1 - \frac{1}{3}} \right)$ or $e^{2x} = 2$	A1F		
	$x = \frac{1}{2}\ln 2$	A1	4	САО
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sinh x - 3\cosh x \text{or} -\mathrm{e}^x - 2\mathrm{e}^{-x}$	M1		
	= 0 when $\tanh x = 3$ or $e^{2x} = -2$	A1		
	Correct reason	E1	3	Must give a reason
(iii)	$\frac{d^2 y}{dx^2} = y = 0$ at $\left(\frac{1}{2}\ln 2, 0\right)$	B1F	1	
	ie one point			
	Total		15	

MFP2 (cont				
Q	Solution	Marks	Total	Comments
4	"			
(a)(i)	Circle	B1		
	Correct centre	B1		
	Enclosing the origin	B1	3	
(ii)	Half line	B1		
	Correct starting point	B1		
	Correct angle	B1	3	
(b)	Correct part of the line indicated	B1F	1	
	Total	D1	7	
5(a)(1)	$\alpha + \beta + \gamma = 41$	BI	1	
(ii)	$\alpha\beta\gamma = 4-2i$	B1	1	
(b)(i)	$\alpha + \alpha = 4i, \ \alpha = 2i$	B1	1	AG
(ii)	$\beta \gamma = \frac{4-2i}{2i} = -2i-1$	M1		Some method must be shown, eg $\frac{2}{1}$ – 1
	21	A1	2	AG
			-	
(iii)	$q = \alpha\beta + \beta\gamma + \gamma\alpha$	M1		
	$= \alpha \left(\beta + \gamma \right) + \beta \gamma$	M1		Or $\alpha^2 + \beta \gamma$, is suitable grouping
	$= 2i \cdot 2i - 2i - 1 = -2i - 5$	A1	3	AG
(c)	Use of $\beta + \gamma = 2i$ and $\beta \gamma = -2i-1$	M1		Elimination of say γ to arrive at
	$z^2 - 2iz - (1+2i) = 0$	A1	2	$\beta^2 - 2i\beta - (1+2i) = 0$ M1A0 unless
				also some reference to γ being a root
				AG
(d)	f(-1) = 1 + 2i - 1 - 2i = 0	M1		For any correct method
<u> </u>	$\beta = -1, \gamma = 1 + 2i$	A1A1	3	A1 for each answer
	Total		13	

MFP2 - A	QA GCE N	Mark Scheme,	2006 June	series
----------	----------	--------------	-----------	--------

Q	Solution	Marks	Total	Comments
6(a)	$f(n+1) - 8f(n) = 15^{n+1} - 8^{n-1}$			
	$-8(15^n - 8^{n-2})$	M1A1		
	$=15^{n+1}-8.15^n$			
	$=15^{n}(15-8)$	M1		For multiples of powers of 15 only
	$= 7.15^{n}$	A1	4	For valid method ie not using 120^n etc
(b)	Assume $f(n)$ is $M(7)$			
	Then $f(n+1) - 8f(n) = 7 \times 15^{n}$	M1		Or considering $f(n+1) - f(n)$
	f(n+1) = M(7) + M(7)			
	= M(7)	A1		
	$n = 2$: $f(n) = 15^2 - 8^0 = 224$			
	$= 7 \times 32$	B1		n = 1 B0
	$P(n) \Rightarrow P(n+1) \text{ and } P(2) \text{ true}$	E1	4	Must score previous 3 marks to be awarded E1
	Total		8	

MFP2 (cont)			
Q	Solution	Marks	Total	Comments
7(a)	$z = e^{\frac{2k\pi i}{6}}, k = 0, \pm 1, \pm 2, 3$	M1 A2,1,0	3	OE M1A1 only if: (1) range for k is incorrect eg $0,1,2,3,4,5$ (2) i is missing
(b)(i)	$\frac{w^2 - 1}{w} = w - \frac{1}{w} = 2i\sin\theta$	M1A1	2	AG
(ii)	$\frac{w}{w^2 - 1} = \frac{1}{2i\sin\theta}$	M1		
	$=-rac{\mathrm{i}}{2\sin\theta}$	A1	2	AG
(iii)	$\frac{2\mathrm{i}}{w^2 - 1} = \frac{-2\mathrm{i}w^{-1}\mathrm{i}}{2\sin\theta}$	M1		Or for $\frac{1}{\sin\theta} e^{i\theta}$
	$=\frac{1}{\sin\theta}(\cos\theta-\mathrm{i}\sin\theta)$	A1		
	$= \cot \theta - i$	A1	3	AG
(iv)	$z = \frac{2i}{w^2 - 1}$ Or $z + 2i = \frac{2i}{w^2 - 1} + 2i$	M1		ie any correct method
	$z + 2i = zw^2$	A1	2	AG
(c)(i)	No coefficient of z^6	E1	1	
(ii)	$\left(w^2\right)^6 = 1 \qquad w^2 = e^{\frac{k\pi i}{3}}$	B1		Alternatively:
	$z = \cot \frac{k\pi}{6} - i$, $k = \pm 1, \pm 2, 3$	M1 A2,1,0	4	$z + 2i = e^{\frac{\pi i \pi}{3}}z \qquad B1$ $z = \frac{2i}{2} \qquad M1$
				$e^{\frac{k\pi i}{3}} - 1$ roots A2,1,0
				(NB roots are $\pm \sqrt{3} - i; \pm \frac{1}{\sqrt{3}} - i; -i$)
	Total		17	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MFP2 Further Pure 2

Mark Scheme

2007 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

Μ	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
Е	mark is for explanation					
$\sqrt{100}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	с	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Jan 07

MFP2				
Q	Solution	Marks	Total	Comments
1(a)	Use of $\cosh^2 x = 1 + \sinh^2 x$	M1		Must be correct for M1
	$4\sinh^2 x - 7\sinh x + 3 = 0$	A1		
	$(4\sinh x - 3)(\sinh x - 1) = 0$	A1√		Provided quadratic factorizes
	$\sinh x = \frac{3}{4}$ or 1	A1√	4	
(b)	Use of formula for sinh ⁻¹	M1		
	$x = \ln 2$ or $\ln(1 + \sqrt{2})$	A1√		
		A1√	3	
2(a)	lotal		7	
	y • (3, 2) o • (4, -2)			
(i)	Circle Correct centre Correct radius Touching <i>x</i> -axis	B1 B1 B1	3	
(ii)	Line			
	Point (3,2) indicated	B1		
	Line through $\left(1\frac{1}{2}, 1\right)$	B1√		
	Perpendicular to $(0,0) \rightarrow (3,2)$	B1	3	
(b)	Correct shaded area	B1	2	For shading inside the circle provided no other area is shaded
		B1√		Must be a circle and a straight line for second B1
	Total		8	

Q	Solution	Marks	Total	Comments
3 (a)	$-k^{3}i + 2(1-i)(-k^{2}) + 32(1+i) = 0$	M1		Any form
	Equate real and imaginary parts:			
	$-k^3 + 2k^2 + 32 = 0$	A1		
	$-2k^2 + 32 = 0$	A1		
	$k = \pm 4$	A1		
	<i>k</i> = +4	E1	5	AG
	Sum of roots is $2(1, i)$	M1		$O_{\mathbf{r}} \approx \theta_{\mathbf{r}} \qquad (22+22i)$
(0)	Sum of roots is $-2(1-1)$	101 1		Of $\alpha \beta \gamma = -(52+521)$ Must be correct for M1
	Third root $2-2i$	A1√	2	
	Total		7	
4(a)(i)	$\frac{d}{dt}\left(\frac{1}{1-t}\right) = -1(\cosh t)^{-2}\sinh t$	M1A1		$-2(e^t - e^{-t})$
	$dt(\cosh t)$	WITAI		Or $\frac{1}{\left(e^{t}+e^{-t}\right)^{2}}$
	= -sech t tanh t	A 1	3	AG
		711	5	
(ii)	Use of $\tanh^2 t = 1 - \operatorname{sech}^2 t$	M1		
	Printed result	A1	2	
(b)(i)	$\dot{x} = 1 - \operatorname{sech}^2 t (\dot{y} = -\operatorname{sech} t \tanh t)$	B1		
	$\dot{x}^{2} + \dot{y}^{2} = (1 - \operatorname{sech}^{2} t)^{2} + \operatorname{sech}^{2} t - \operatorname{sech}^{4} t$	M1A1		Any form
	$=1-\operatorname{sech}^{2} t=\tanh^{2} t$	A1	4	AG
(ii)	$s = \int_0^t \tanh t \mathrm{d}t$	M1		Ignore limits for M1 and first A1
	$= \left[\ln \cosh t \right]_{0}^{t}$	A1		
	$= \ln \cosh t$	Al	3	AG
			5	
(iii)	$e^s = \cosh t$	M1		
	$y = e^{-s}$	A1	2	AG
	e t			
(c)	$S = 2\pi \int_0^t \operatorname{sech} t \tanh t \mathrm{d}t$	M1		Ignore limits for M1 and first A1
	$=2\pi \left[-\operatorname{sech} t\right]_0^t$	A1		
	$=2\pi(1-\operatorname{sech} t)$	A1		
	$=2\pi(1-e^{-s})$	A1	4	AG
	Total		18	

MFP2 (cont)			
Q	Solution	Marks	Total	Comments
5(a)	Assume true for $n = k$			
	$(\cos\theta + i\sin\theta)^{k+1}$			
	$= (\cos k\theta + i \sin k\theta)(\cos \theta + i \sin \theta)$	M1		
	Multiply out	A1		Any form
	$=\cos(k+1)\theta+i\sin(k+1)\theta$	A1		
	True for $n = 1$ shown	B1		
	$P(k) \Rightarrow P(k+1)$ and $P(1)$ true	E1	5	Allow E1 only if previous 4 marks earned
(h)	$\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)^6 = \cos\frac{6\pi}{2} + i\sin\frac{6\pi}{2}$			
(0)	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	M1		
	= -1	A1	2	
(c)	$(\cos\theta + i\sin\theta)(1 + \cos\theta - i\sin\theta)$	M1		
	$=\cos\theta + \cos^2\theta - i\sin\theta\cos\theta$			
	$+i\sin\theta+i\sin\theta\cos\theta+\sin^2\theta$	A1		(Accept $-i^2 \sin^2 \theta$)
				Or $e^{i\theta} (1 + e^{-i\theta})$
	$=1+\cos\theta+i\sin\theta$	A1	3	AG
(d)	$\theta = \frac{\pi}{2}$ used	M1		In the context of part (c)
	6 Dent (c) minut to more (N/1		
	Part (c) raised to power 6			
	ose of result in part (0)	AI		
	$\left(1+\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\right)^{\circ}+$			
	$\left(1+\cos\frac{\pi}{6}-i\sin\frac{\pi}{6}\right)^6=0$	A1	4	AG
	Total		14	

MFP2 (cont	AFP2 (cont)				
Q	Solution	Marks	Total	Comments	
6(a)	1, $e^{\pm \frac{2\pi i}{3}}$	M1A1	2	M1 for any method which would lead to the correct answers Accept e^0 or e^{0i} Also accept answers written down correctly	
(b)	Any correct method Shown for one root	M1 A1	2	AG	
(c)(i)	$\frac{\omega}{\omega+1} = \frac{\omega}{-\omega^2}$	M1		ie use of result in (b)	
	$=-\frac{1}{\omega}$	A1	2	AG	
(ii)	$\frac{\omega^2}{\omega^2 + 1} = -\omega$	A1	1	AG	
(iii)	$\left(\frac{\omega}{\omega+1}\right)^k + \left(\frac{\omega^2}{\omega^2+1}\right)^k = \left(-\frac{1}{\omega}\right)^k + \left(-\omega\right)^k$	M1A1			
	Use of $\omega = e^{\frac{2\pi i}{3}}$	m1			
	$= \left(-1\right)^k \left(e^{\frac{-2k\pi i}{3}} + e^{\frac{2k\pi i}{3}}\right)$	A1			
	$= \left(-1\right)^k 2\cos\frac{2k\pi}{3}$	A1	5	AG	
	Total		12		

MFP2 (cont)			
Q	Solution	Marks	Total	Comments
7(a)	$\tan((r+1)x - rx)$ = $\frac{\tan(r+1)x - \tan rx}{1 + \tan(r+1)x \tan rx}$ Multiplying up Printed result	M1A1 A1 A1	4	AG
(b)	$x = \frac{\pi}{50}$ $\tan \frac{\pi}{50} \tan \frac{2\pi}{50} = \frac{\tan \frac{2\pi}{50}}{\tan \frac{\pi}{50}} - \frac{\tan \frac{\pi}{50}}{\tan \frac{\pi}{50}} - 1$ $\tan \frac{2\pi}{50} \tan \frac{3\pi}{50} = \frac{\tan \frac{3\pi}{50}}{\tan \frac{\pi}{50}} - \frac{\tan \frac{2\pi}{50}}{\tan \frac{\pi}{50}} - 1$ $\tan \frac{19\pi}{50} \tan \frac{20\pi}{50} = \frac{\tan \frac{20\pi}{50}}{\tan \frac{\pi}{50}} - \frac{\tan \frac{19\pi}{50}}{\tan \frac{\pi}{50}} - 1$	M1A1		At least three lines to be shown Accept if x 's used
	Clear cancellation	ml		
	Sum = $\frac{\tan \frac{20\pi}{50}}{\tan \frac{\pi}{50}} - \frac{\tan \frac{\pi}{50}}{\tan \frac{\pi}{50}} - 19$	A1		
	$=\frac{\tan\frac{2\pi}{5}}{\tan\frac{\pi}{50}}-20$	A1	5	AG
	Total		9	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MFP2 Further Pure 2

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and	l is for method	and accuracy		
E	mark is for explanation				
or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	$\mathbf{F}\mathbf{W}$	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

June 07

MFP2				
Q	Solution	Marks	Total	Comments
1(a)	$f(r+1) - f(r) = r(r+1)^{2} - (r-1)r^{2}$	M1		
	$=r\left(r^2+2r+1-r^2+r\right)$	A1		any expanded form
	=r(3r+1)	A1	3	AG
(b)	r = 50 f(51) - f(50)			OE
	r = 51 f(52) - f(51) PI	M1 A 1		$\frac{99}{\Sigma}$
	r = 99 $f(100) - f(99)$	IVI I A I		clearly shown. Accept \sum_{1}^{-}
	$\sum_{r=50}^{99} r(3r+1) = f(100) - f(50)$	ml		clear cancellation
	=867500	A1F	4	cao
	Total		7	
2(a)	$\sum \alpha \beta = 6$	B1	1	
(b)(i)	Sum of squares < 0 not all real	F1		
	Coefficients real ∴ conjugate pair	E1	2	
(ii)	$(\sum \alpha)^2 = \sum \alpha^2 + 2\sum \alpha\beta$	M1A1	-	A1 for numerical values inserted
	$(\sum \alpha)^2 = 0$	A 1 E		
	$(\underline{\nearrow}^{\alpha}) = 0$		4	
(c)(i)	-1-3i is a root	AIF B1	4	cao
	Use of appropriate relationship	DI		
	$eg \sum \alpha = 0$	M1		M0 if $\sum \alpha^2$ used unless the root 2 is
				checked
	Third root 2	A1F	3	incorrect $p \checkmark$
(ii)	q = -(-1-3i)(-1+3i)2	M1		allow even if sign error
	= -20	A1F	2	ft incorrect 3 rd root
	Total		12	
3	$(\cos\theta + i\sin\theta)^{15} = \cos 15\theta + i\sin 15\theta$	M1		or $= e^{15i\theta}$
	$\cos 15\theta = 0$			
	$\sin 15\theta = 1$	m1A1		$ar i - a\frac{3\pi i}{2}$
	3π 3π 270°			$m_1 = c$
	$150 = \frac{1}{2}$ of 2/0	AIF		in for both Reel parts which down
	$\theta = \frac{\pi}{10}$ or 18°	A1F	5	ft provided the value of 15θ is a correct value
	SC	-		
	$\cos 15\theta + i\sin 15\theta = i$	(M1)		ar for ang 150 - 0
	$\sin 150 = -1$	(В1)		01101 COS1
	$\theta = \frac{1}{10}$	(B1)	(3)	
	Total		5	

Q	Solution	Marks	Total	Comments
4(a)	$\frac{x}{1+x^2} + \tan^{-1}x$	B1B1	2	
(b)	$\int_0^1 \tan^{-1} x dx = \left[x \tan^{-1} x \right]_0^1 - \int_0^1 \frac{x dx}{1 + x^2}$	M1		either use of part (a) or integration by parts. Allow if sign error
	$\int \frac{x \mathrm{d}x}{1+x^2} = \frac{1}{2} \ln\left(1+x^2\right)$	M1A1F		ft on $\int \frac{x}{1-x^2} dx$
	$I = 1 \tan^{-1} 1 - \frac{1}{2} \ln 2$	M1		
	$=\frac{\pi}{4}-\ln\sqrt{2}$	A1	5	AG
	Total		7	
5(a)	Explanation	E2,1,0	2	E1 for $i = e^{\frac{\pi i}{2}}$ or $iz_1 = -y_1 + ix_1$
(b)(i)	Perpendicular bisector of <i>AB</i> through <i>O</i>	B1 B1	2	
(ii)	half-line from <i>B</i>	B1 B1		If L_2 is taken to be the line <i>AB</i> give B0
	parallel to <i>OA</i>	B1	3	
(c)	$(1+i)z_1$	M1A1	2	ft if L_2 taken as line AB
	Total		9	
6(a)	$\left(1 - \frac{1}{(k+1)^2}\right) \times \frac{k+1}{2k} = \frac{(k+1)^2 - 1}{(k+1)^2} \times \frac{k+1}{2k}$	M1		
	$=\frac{k^2+2k}{\left(k+1\right)^2}\times\frac{k+1}{2k}$	A1		
	$=\frac{k+2}{2(k+1)}$	A1	3	AG
(b)	Assume true for $n = k$, then $\left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \dots \left(1 - \frac{1}{(k+1)^2}\right)$	M1		
	$=\frac{k+2}{2(k+1)}$	A1		
	True for $n = 2$ shown $1 - \frac{1}{2^2} = \frac{3}{4}$	B1		
	$P_n \Rightarrow P_{n+1}$ and P_2 true	E1	4	only if the other 3 marks earned
	Total		7	

Q	Solution	Marks	Total	Comments
7(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\sqrt{x}}$	B1		accept $2x^{\frac{1}{2}}$ etc
	$\sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} = \sqrt{1 + \frac{4}{x}}$	M1A1F		ft sign error in $\frac{dy}{dx}$
	$=\sqrt{\frac{x+4}{x}}$	A1	4	AG
(b)(i)	$x = 4\sinh^2\theta, \ dx = 8\sinh\theta\cosh\thetad\theta$	M1A1		M1 for any attempt at $\frac{dx}{d\theta}$
	$I = \int \sqrt{\frac{4\sinh^2\theta + 4}{4\sinh^2\theta}} 8\sinh\theta\cosh\thetad\theta$	M1		
	$= \int \frac{2\cosh\theta}{2\sinh\theta} 8\sinh\theta\cosh\theta\mathrm{d}\theta$	ml		ie use of $\cosh^2 \theta - \sinh^2 \theta = 1$
	$= \int 8 \cosh^2 \theta \mathrm{d}\theta$	A1	5	AG
(ii)	Use of $2\cosh^2\theta = 1 + \cosh 2\theta$	M1		allow if sign error
	$\mathbf{I} = \int 4(1 + \cosh 2\theta) \mathrm{d}\theta$	A1		oe
	$=4\theta+2\sinh 2\theta$	A1F		oe
	Use of $\sinh 2\theta = 2\sinh\theta\cosh\theta$	m1		
	$=4\sinh^{-1}\frac{1}{2}+4\times\frac{1}{2}\sqrt{1+\frac{1}{4}}$	A1F		
	$=4\sinh^{-1}\frac{1}{2}+\sqrt{5}$	A1	6	AG
	Total		15	

MFP2 (cont)				
Q	Solution	Marks	Total	Comments
8(a)(i)	$z^{3} = \frac{4 \pm \sqrt{16 - 32}}{2}$	M1		
	$=2\pm 2i$	A1	2	AG
(ii)	$2 + 2i = 2\sqrt{2}e^{\frac{\pi i}{4}}, \ 2 - 2i = 2\sqrt{2}e^{\frac{-\pi i}{4}}$	M1 A1A1		M1 for either result or for one of $r = 2\sqrt{2}, \theta = \pm \frac{\pi}{4}$
				$\left(r = 2\sqrt{2} A1, \ \theta = \pm \frac{\pi}{4} A1\right)$
	$z = \sqrt{2}e^{\frac{\pi i}{12} + \frac{2k\pi i}{3}}$ or $\sqrt{2}e^{\frac{-\pi i}{12} + \frac{2k\pi i}{3}}$	M1		M1 for either
	$z = \sqrt{2} e^{\frac{\pm \pi i}{12}} \sqrt{2} e^{\frac{\pm 3\pi i}{4}} \sqrt{2} e^{\frac{\pm 7\pi i}{12}}$			allow A1 for any 3 correct ft errors in π
		A2,1,0 F	6	$\pm \frac{\pi}{4}$
(b)	Multiplication of brackets	M1		
	Use of $e^{i\theta} + e^{-i\theta} = 2\cos\theta$	A1	2	AG
(c)	$\left(z-\sqrt{2}e^{\frac{\pi i}{12}}\right)\left(z-\sqrt{2}e^{-\frac{\pi i}{12}}\right)$			
	$= z^2 - 2\sqrt{2}\cos\frac{\pi}{12}z + 2$	M1A1F		PI
	$\left(z^2 - 2\sqrt{2}\cos\frac{\pi}{12}z + 2\right)$			
	Product is $(z^2 - 2\sqrt{2}\cos\frac{7\pi}{12}z + 2)$	A1F	3	$\left(\text{or } z^2 + 2z + 2 \right)$
	$\left(z^2 - 2\sqrt{2}\cos\frac{3\pi}{4}z + 2\right)$			
	Total		13	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MFP2 Further Pure 2

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

Key to mark scheme and abbreviations used in marking

Μ	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
E	mark is for explanation				
$\sqrt{100}$ or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
-x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1 (a)	Any method for finding <i>r</i> or θ $r = 4\sqrt{2}$, $\theta = \frac{\pi}{2}$	M1 A1A1	3	
	$7 - 4\sqrt{2}, \ 0 - \frac{\pi}{4}$		5	
	$z^{3} = 4\sqrt{2} e^{4}$ $z = \sqrt{2} e^{\frac{\pi i}{20} + \frac{2k\pi i}{5}}$	M1 A1F A1F		M1 needs some reference to $a + 2k\pi i$ A1 for r A1 for θ incorrect r , θ part (a)
	$z = \sqrt{2} e^{\frac{\pi i}{20}}, \ \sqrt{2} e^{\frac{9\pi i}{20}}, \ \sqrt{2} e^{\frac{17\pi i}{20}}, \sqrt{2} e^{\frac{-7\pi i}{20}}, \ \sqrt{2} e^{\frac{-15\pi i}{20}}$	A2,1,0 F	5	Accept r in any form eg $32^{\frac{1}{10}}$ Correct but some answers outside range allow A1 ft incorrect r, θ in part (a)
	Total		8	
2(a)	Attempt to expand $(2r+1)^{3} - (2r-1)^{3}$	M1		
	$(2r+1)^3$ or $(2r-1)^3$ expanded	A1		
	$24r^2 + 2$	A1	3	AG
(b)	$r = 1 \qquad 3^{3} - 1^{3} = 24 \times 1^{2} + 2$ $r = 2 \qquad 5^{3} - 3^{3} = 24 \times 2^{2} + 2$ $r = n \qquad (2n+1)^{3} - (2n-1)^{3} = 24 \times n^{2} + 2$	M1A1		3 rows seen Do not allow M1 for $(2n+1)^3 - 1$ not equal to anything
	$(2n+1)^3 - 1 = 24\sum_{r=1}^n r^2 + 2n$	A1		
	$8n^{3} + 12n^{2} + 6n + 1 - 1 - 2n = 24\sum_{r=1}^{n} r^{2}$	M1		M1 for multiplication of bracket or taking $(2n+1)$ out as a factor
	$8n^3 + 12n^2 + 4n = 24\sum_{r=1}^n r^2$	A1		CAO
	$\sum_{r=1}^{n} r^{2} = \frac{1}{6} n (n+1) (2n+1)$	A1	6	AG
	Total		9	

Q	Solution	Marks	Total	Comments
3 (a)(i)	$z = -i$ $ -2\sqrt{3} - 2i = \sqrt{12 + 4} = 4$	M1		$ -2\sqrt{3}-2i $
		A1	2	4
(**)	<i>–</i>			
(11)	Centre of circle is $2\sqrt{3} + i$	B1		Do not accept $(2\sqrt{3}, 1)$ unless attempt to
		N (1		solve using trig
	Substitute into line π	MI		
	$\arg\left(2\sqrt{3}+2\mathrm{i}\right)=\frac{\pi}{6}$ shown	A1	3	
(b)	<i>¥</i> ↑			
	-1			
		D 1		
	Circle: centre correct through $(0 - 1)$	BI B1		
	Half line: through $(0, -1)$	B1 B1		
	through centre of circle	B1	4	
(c)	Shading inside circle and below line	B1F		
	Bounded by $y = -1$	B1	2	
	Total	D 1	11	
4(a)(i)	$\sum_{\alpha=-1}^{2} \alpha = -1$	BI	1	
(ii)	$\sum \alpha \beta = 3$	B1	1	
(111)	$\alpha\beta\gamma=1+1$	BI	1	
(b)(i)	$\sum \alpha^2 = (\sum \alpha)^2 - 2\sum \alpha \beta$ used	M1		Allow if sign error or 2 missing
	$=(-i)^2 - 2 \times 3$	A1F		
	$=(-1)^{-1} - 2 \times 3^{-1}$	A1F	3	ft errors in (a)
			5	
(ii)	$\sum \alpha^2 \beta^2 = \left(\sum \alpha \beta\right)^2 - 2\sum \alpha \beta \cdot \beta \gamma$	M1		Allow if sign error in 2 missing
	$=(\sum \alpha \beta)^2 - 2\alpha \beta \gamma \sum \alpha$	A1		
	=9-2(1+i)(-i)	A1F		ft errors in (a)
	=7+2i	A1F	4	ft errors in (a)
(iii)	$\alpha^2 \beta^2 \gamma^2 = (1+i)^2 = 2i$	M1		
(111)	, , , , ,	A1F	2	ft sign error in $\alpha\beta\gamma$
(c)	$z^{3} + 7z^{2} + (7+2i)z - 2i = 0$	B1F		Correct numbers in correct places
	T-4-1	B1F	2	Correct signs
	Total		14	
MFP2 (cont)			
---------------	--	-----------------------	-------	-------------------------
Q	Solution	Marks	Total	Comments
5	Assume result true for $n = k$			
	Then $\sum_{k=1}^{k+1} (r^2 + 1) r!$			
	r=1			
	$= ((k+1)^{2} + 1)(k+1)! + k(k+1)!$	M1A1		
	Taking out $(k+1)!$ as factor	m1		
	$= (k+1)!(k^{2}+2k+1+1+k)$	A1		
	=(k+1)(k+2)!	A1		
	$k = 1$ shown $(1^2 + 1)1! = 2$			
	1×2!=2	B1		
	$P_{k} \Rightarrow P_{k+1}$ and P_{1} true	E1	7	If all 6 marks earned
	Total		7	
6(a)(i)	$\cos 3\theta + \mathrm{i}\sin 3\theta = \left(\cos \theta + \mathrm{i}\sin \theta\right)^3$	M1		
	$=\cos^3\theta + 3i\cos^2\theta\sin\theta + 3i^2\cos\theta\sin^2\theta$			
	$+i^3 \sin^3 \theta$	A1		
	Real parts: $\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$	A1	3	AG
(ii)	Imaginary parts:			
	$\sin 3\theta = 3\cos^2\theta\sin\theta - \sin^3\theta$	A1F	1	
(;;;;)	sin 20			
(III)	$\tan 3\theta = \frac{\sin 3\theta}{\cos 3\theta}$	M1		Used
	$3\cos^2\theta\sin\theta - \sin^3\theta$	A 1E		Emorie sin 20
	$=\frac{1}{\cos^3\theta-3\sin^2\theta\cos\theta}$	АІГ		
	$=\frac{3\tan\theta-\tan^3\theta}{2}$			
	$1-3\tan^2\theta$			
	$=\frac{\tan \theta - 3\tan \theta}{3\tan^2 \theta - 1}$	A1	3	AG
(b)(i)	$\tan\frac{3\pi}{2} = 1$	D1		Used (nessibly implied)
	$\frac{12}{\pi} \qquad r^3 - 3r$	DI		osea (possibly implied)
	$\tan\frac{\pi}{12}$ is a root of $1 = \frac{x^2 - 3x}{3x^2 - 1}$	M1		Must be hence
	$x^3 - 3x^2 - 3x + 1 = 0$	A1	3	
(ii)	Other roots are $\tan \frac{5\pi}{12}$, $\tan \frac{9\pi}{12}$	B 1 D 1	n	
	12 12	ומות	2	
(c)	$\tan\frac{\pi}{2} + \tan\frac{5\pi}{2} + \tan\frac{9\pi}{2} - 3$			
	$\tan \frac{1}{12} + \tan \frac{1}{12} + \tan \frac{1}{12} = 3$	M1		Must be hence
	$\tan\frac{\pi}{12} + \tan\frac{5\pi}{12} = 4$	A1	2	
	Total		14	
			-	

6

MFP2 (cont))			
Q	Solution	Marks	Total	Comments
7(a)	$\frac{dy}{dt} = \frac{1}{dt}$			
	$dx \qquad \tanh \frac{x}{2}$	B1		
	2 x			
	$\operatorname{sech}^2 \frac{x}{2} \dots$	B1		
	1			
	$\overline{2}$	B1		
	=	M1		× ×
	$2 \frac{\sinh \frac{x}{2}}{2\cosh^2 \frac{x}{2}}$	1111		OE is expressing in $\sinh \frac{x}{2}$ and $\cosh \frac{x}{2}$
	$2\frac{1}{\cosh\frac{x}{2}}\cos\frac{x}{2}$			
	1			
	$=\frac{1}{2\sinh\frac{x}{2}\cosh\frac{x}{2}}$			
	2 2			
	$=\frac{1}{\sinh x}$	M1		ie use of $\sinh 2A = 2\sinh A \cosh A$
	$= \operatorname{cosech} x$	A1	6	AG
	Alternative	(D1)		
	$\ln \sinh \frac{x}{2} - \ln \cosh \frac{x}{2}$	(D1)		
	$1 \cosh \frac{x}{2} = 1 \sinh \frac{x}{2}$	(P 1 P 1)		
	$\frac{1}{2}\frac{1}{\sinh\frac{x}{2}} - \frac{1}{2}\frac{1}{\cosh\frac{x}{2}}$			
	2 2			
	$\frac{\cos \frac{1}{2} - \sin \frac{1}{2}}{2}$	(M1)		
	$2\sinh\frac{x}{2}\cosh\frac{x}{2}$			
	Use of $\sinh 2A = 2\sinh A \cosh A$	(M1)		
	result	(A1)		
(b)(i)	$a = \int_{-\infty}^{2} \sqrt{1 + \operatorname{accoch}^{2} u} du$	M		
~ / ~ /	$s = \int_{1}^{1} \sqrt{1 + \cos \left(\cos x \right) dx}$	MI		
	$=\int_{1}^{2} \coth x dx$	A1	2	AG
(ii)	$s = [\ln \sinh x]_1^2$	M1		needs to be correct
	$=\ln\sinh 2 - \ln\sinh 1$	A1		
	$=\ln\frac{2\sinh l\cosh l}{2}$	A1F		must be seen
	$\sinh 1$ $-\ln(2\cosh 1)$	Δ 1	Λ	^G
	Total		+ 12	
	TOTAL		75	

7

General Certificate of Education

Mathematics 6360

MFP2 Further Pure 2

Mark Scheme

2008 examination – June series

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

Key to mark scheme and abbreviations used in marking

Μ	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
E	mark is for explanation				
or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
– <i>x</i> EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	с	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP2				
Q	Solution	Marks	Total	Comments
1(a)	$5\left(\frac{e^{x}-e^{-x}}{2}\right)+\left(\frac{e^{x}+e^{-x}}{2}\right)$	M1		M0 if no 2s in denominator
	$=3e^{x}-2e^{-x}$	A1	2	
(b)	$3e^x - 2e^{-x} + 5 = 0$			
	$3e^{2x} + 5e^{x} - 2 = 0$	M1		ft if 2s missing in (a)
	$(3e^x - 1)(e^x + 2) = 0$	A1F		
	$e^x \neq -2$	E1		any indication of rejection
	$e^x = \frac{1}{3} \qquad x = \ln\frac{1}{3}$	A1F	4	provided quadratic factorises into real factors
	Total		6	
2(a)	1 = A(r+2) + Br	M1		
	$2A = 1, \qquad A = \frac{1}{2}$	A1		
	$A+B=0, B=-\frac{1}{2}$	A1	3	
(b)	$r = 10$ $\frac{1}{2} \left(\frac{1}{10.11} - \frac{1}{11.12} \right)$			if (a) is incorrect but $A = \frac{1}{2}$ and $B = -\frac{1}{2}$ used allow full marks for (b)
	$r = 11$ $\frac{1}{2} \left(\frac{1}{11.12} - \frac{1}{12.13} \right)$			
	$r = 98 \qquad \frac{1}{2} \left(\frac{1}{98.99} - \frac{1}{99.100} \right)$	M1A1		3 relevant rows seen
	$S = \frac{1}{2} \left(\frac{1}{10.11} - \frac{1}{99.100} \right)$	m1		if split into $\frac{1}{2r} - \frac{1}{r+1} + \frac{1}{2(r+2)}$, follow
				mark scheme, in which case $\frac{1}{2.10} - \frac{1}{2.11} + \frac{1}{2.100} - \frac{1}{2.99}$ scores m1
	$=\frac{89}{19800}$	A1	4	
	Total		7	

Q	Solution	Marks	Total	Comments
3 (a)(i)	$\alpha\beta\gamma = -18 + 12i$	B1	1	accept -(18-12i)
(ii)	$\alpha + \beta + \gamma = 0$	B1	1	
(b)(i)	$\alpha = -2$	B1F	1	
(ii)	$\beta \gamma = \frac{\alpha \beta \gamma}{\alpha} = 9 - 6i$	M1 A1F	2	ft sign errors in (a) or (b)(i) or slips such as miscopy
(iii)	$q = \sum \alpha \beta = \alpha(\beta + \gamma) + \beta \gamma$ $= -2 \times 2 + 9 - 6i$	M1		ft incorrect By or or
	= 5 - 6i	AIF AIF	3	It incorrect $p\gamma$ or α
(c)	$\beta = ki, \gamma = 2 - ki$	B1		
	ki(2-ki) = 9-6i	M1		
	$2k = -6 (k^2 = 9) k = -3$	m1		imaginary parts
	$\beta = -3i, \gamma = 2 + 3i$	A1	4	
	Total		12	

MFP2 (cont)

Q	Solution	Marks	Total	Comments
4(a)	radius $\sqrt{2}$ centre $-5+i$	B1,B1	2	condone $(-5, 1)$ for centre
				do not accept (-5, i)
(b)	$\arg(z_1+2i) = \arg(-4+4i)$	M1		
	$=\frac{3\pi}{4}$	A1	2	clearly shown eg tan ⁻¹ $\left(-\frac{1}{1}\right)$
	4			
(c)(i)	$ z_1+5-i = 1+i =\sqrt{2}$	B1	1	
(ii)	Gradient of line from			
	$(-5, 1)$ to $(-4, 2)$ is $1, (\frac{\pi}{2})$			
	(3,1)(0,(4,2))(1)(4)	MIAI		M1 for a complete method
	radius ⊥line ∴ tangent	E1	3	
(iii)				
	Circle correct	B1F		ft incorrect centre or radius
	Half line correct	B1	2	line must touch <i>C</i> generally above the circle
(d)	z_2 in correct place	B1		B0 if z_2 is directly below the centre of <i>C</i>
	with tangent shown	B1	2	
	Total		12	

Q	Solution	Marks	Total	Comments
5(a)	$(e^{x} + e^{-x})^{2}$ expanded correctly	B1		$e^{2x} + 2e^0 + e^{-2x}$ is acceptable
	Result	B1	2	AG
(b)(i)	$\frac{dy}{dt} = \sinh x$	B1		
	dx			
	$\sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)} = \sqrt{1 + \sinh^2 x}$			
	$= \cosh x$	M1		use of $\cosh^2 x - \sinh^2 x = 1$
	$S = 2\pi \int_0^{\ln a} \cosh^2 x \mathrm{d}x$	A1	3	AG (clearly derived)
(ii)	Use of $\cosh^2 x = \frac{1}{2}(1 + \cosh 2x)$	M1		allow one slip in formula
	2			MO If $\int \cosh^2 x dx$ is given as $\sinh^2 x$
	$S = \pi \left[x + \frac{1}{2} \sinh 2x \right]_{0}^{\ln a}$	A1		
	$=\pi\left[\ln a + \frac{1}{2}\left(\frac{e^{2\ln a} - e^{-2\ln a}}{e^{2\ln a}}\right)\right]$	M1		
	$=\pi\left[\ln a + \frac{1}{4}\left(a^2 - a^{-2}\right)\right]$	A1F		
	$=\pi\left[\ln a+\frac{1}{4a^2}\left(a^4-1\right)\right]$	A1	5	AG
	Total		10	
6	u = x - 2			
	$du = dx$ or $\frac{du}{dx} = 1$	B1		clearly seen
	$32 + 4x - x^2 = 36 - u^2$	B1		if $32 + 4x - x^2$ is written as $36 - (x - 2)^2$, give B2
	$\int \frac{\mathrm{d}u}{\sqrt{36-u^2}} = \sin^{-1}\frac{u}{6}$	M1		allow if dx is used instead of du
	limits –3 and 3			
	or substitute back to give $\sin^{-1} \frac{x-2}{6}$	A1		
	$I = \frac{\pi}{6} + \frac{\pi}{6} = \frac{\pi}{3}$	A1	5	
	Total		5	

Q	Solution	Marks	Total	Comments
7(a)	Clear reason given	E1	1	Minimum $O \times E = E$
(b)(i)	$(k+1)((k+1)^{2}+5)-k(k^{2}+5)$	M1		
	$=3k^{2}+3k+6$	A1		
	$k^{2} + k = k(k+1) = M(2)$	E1		Must be shown
	f(k+1) - f(k) = M(6)	E1	4	
(ii)	Assume true for $n = k$			
	f(k+1) - f(k) = M(6)	M1		Clear method
	$\therefore f(k+1) = M(6) + f(k)$			
	$=M\left(6\right) +M\left(6\right)$	A1		
	=M(6)			
	True for $n = 1$	B1		
	$P(n) \rightarrow P(n+1)$ and $P(1)$ true	E1	4	Provided all other marks earned in (b)(ii)
	Total		9	

Q	Solution	Marks	Total	Comments
8(a)(i)	$\left(z+\frac{1}{z}\right)\left(z-\frac{1}{z}\right) = z^2 - \frac{1}{z^2}$	B1	1	
(ii)	$ \left(z^{2} - \frac{1}{z^{2}}\right)^{2} \left(z + \frac{1}{z}\right)^{2} $ $= \left(z^{4} - 2 + \frac{1}{z^{4}}\right) \left(z^{2} + 2 + \frac{1}{z^{2}}\right) $	M1A1		Alternatives for M1A1: $\left(z^{4} + 4z^{2} + 6 + \frac{4}{z^{2}} + \frac{1}{z^{4}}\right)\left(z^{2} - 2 + \frac{1}{z^{2}}\right) \text{ or }$ $\left(z^{3} - \frac{1}{z^{3}}\right)^{2} - 2\left(z^{3} - \frac{1}{z^{3}}\right)\left(z - \frac{1}{z}\right) + \left(z - \frac{1}{z}\right)^{2}$
	$= z^{6} + \frac{1}{z^{6}} + 2\left(z^{4} + \frac{1}{z^{4}}\right) - \left(z^{2} + \frac{1}{z^{2}}\right) - 4$	A1	3	CAO (not necessarily in this form)
(b)(i)	$z^{n} + \frac{1}{z^{n}} = \cos n\theta + i\sin n\theta + \cos(-n\theta) + i\sin(-n\theta)$	M1A1		
	$= 2\cos n\theta$	A1	3	AG SC: if solution is incomplete and $(\cos\theta + i\sin\theta)^{-n}$ is written as $\cos n\theta - i\sin n\theta$, award M1A0A1
(ii)	$z^n - z^{-n} = 2i\sin n\theta$	B1	1	
(c)	RHS = $2\cos 6\theta + 4\cos 4\theta - 2\cos 2\theta - 4$ LHS = $-64\cos^4 \theta \sin^2 \theta$ $\cos^4 \theta \sin^2 \theta$	M1 A1F M1		ft incorrect values in (a)(ii) provided they are cosines
	$= -\frac{1}{32}\cos 6\theta - \frac{1}{16}\cos 4\theta + \frac{1}{32}\cos 2\theta + \frac{1}{16}$	A1	4	
(d)	$-\frac{\sin 6\theta}{192} - \frac{\sin 4\theta}{64} + \frac{\sin 2\theta}{64} + \frac{\theta}{16} (+k)$	M1 A1F	2	ft incorrect coefficients but not letters <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i>
	Total		14	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MFP2 Further Pure 2

Mark Scheme

2009 examination - January series

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

Μ	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is	for method and a	accuracy		
E	mark is for explanation				
\sqrt{or} ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
-x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP2				
Q	Solution	Marks	Total	Comments
1(a)	LHS = $1 + \frac{1}{2} \left(e^{2\theta} - 2 + e^{-2\theta} \right)$	M1		Expansion of $\frac{1}{2}(e^{\theta}-e^{-\theta})^2$ correctly
		A1		Any form
	$=\frac{1}{2}\left(e^{2\theta}+e^{-2\theta}\right)=\cosh 2\theta$	A1	3	AG
(b)	$3+6\sinh^2\theta=2\sinh\theta+11$	M1		
	$3\sinh^2\theta - \sinh\theta - 4 = 0$	A1		OE
	$(3\sinh\theta - 4)(\sinh\theta + 1) = 0$	M1		Attempt to factorise or formula
	$\sinh\theta = \frac{4}{3}$ or -1	A1F		ft if factorises or real roots found
	$\theta = \ln 3$	A1F		
	$\theta = \ln\left(\sqrt{2} - 1\right)$	A1F	6	
	Total		9	
2(-)		D 1		Circle
2(a)	<i>y</i>	BI		Circle
		B1		Correct centre
		B1		Correct radius
	P_2 P_1	B1F	4	Inside shading
	a			
	*			
(b)	Correct points P_1 and P_2 indicated	B1F		Possibly by tangents drawn ft mirror image of circle in x-axis
	$\sin \alpha = \frac{2}{4}$	M1		
	4 π			
	$\alpha = \frac{1}{6}$	Al		
	Range is $\frac{\pi}{3} \leqslant \arg z \leqslant \frac{2\pi}{3}$	A1	4	Deduct 1 for angles in degrees
	Total		8	

Q	Solution	Marks	Total	Comments
3 (a)	f(r)-f(r-1)			
	$=\frac{1}{4}r^{2}(r+1)^{2}-\frac{1}{4}(r-1)^{2}r^{2}$	M1		
	$=\frac{1}{4}r^{2}(r^{2}+2r+1-r^{2}+2r-1)$	A1		Correct expansions of $(r + 1)^2$ and $(r - 1)^2$
	$=r^{3}$	A1	3	AG
(b)	$r = n: n^{3} = \frac{1}{4} n^{2} (n+1)^{2} - \frac{1}{4} (n-1)^{2} n^{2}$	M1 A1		For either $r = n$ or $r = 2n$. PI
	$r = 2n:$ $(2n)^{3} = \frac{1}{4}(2n)^{2}(2n+1)^{2} - \frac{1}{4}(2n-1)^{2}(2n)^{2}$	A1		
	$\sum_{r=n}^{2n} r^3 = \frac{1}{4} \cdot 4n^2 (2n+1)^2 - \frac{1}{4} (n-1)^2 n^2$	M1		
	$=\frac{3}{4}n^{2}(5n+1)(n+1)$	A1	5	AG
				Alternatively
				$\sum_{r=1}^{2n} r^3$ and $\sum_{r=1}^{n-1} r^3$ stated M1A1A1
				(M1 for either) Difference M1
	Total		8	
4 (a)	Use of $(\sum \alpha)^2 = \sum \alpha^2 + 2\sum \alpha \beta$	M1		
	$1 = -5 + 2\sum \alpha \beta$	A1		
	$\sum \alpha \beta = 3$	A1	3	AG
	$1(-5-3) = -23 - 3\alpha\beta\gamma$	M 1		For son of identity
(0)	$\alpha\beta\gamma = -5$	A1	2	For use of identity
(c)	$z^3 - z^2 + 3z + 5 = 0$	M1 A1F	2	For correct signs and "= 0"
	$\alpha^2 + \beta^2 + \alpha^2 < 0 \Rightarrow$ non real roots	D 1		
(a)	Coefficients real \therefore conjugate pair	B1	2	
	$f(-1) = 0 \implies z \pm 1$ is a factor	 M1 \ 1	-	
(e)	$(-1) - 0 \rightarrow 2 + 1$ is a factor $(-1) - 1 - 0 \rightarrow 2 + 1 = 1$ is a factor			
	$ \begin{pmatrix} (z+1)(z-2z+3)=0\\ z=-1,1+2i \end{cases} $		А	
	$\frac{1}{2} = -1, 1 \pm 21$ Total	AI	4	

MFP2 (cont)			
Q	Solution	Marks	Total	Comments
5(a)	$\frac{\mathrm{d}u}{\mathrm{d}x} = 2\cosh x \sinh x$	M1		Any correct method
	$= \sinh 2x$	A1	2	AG
(b)	$I = \int_{x=0}^{x=1} \frac{du}{1+u^2}$	M1A1		Ignore limits here
	$= \left[\tan^{-1} u \right]_{x=0}^{x=1}$	A1		
	$= \left[\tan^{-1} \left(\cosh^2 x \right) \right]_0^1$	A1		Or A1 for change of limits
	$= \tan^{-1} \left(\cosh^2 1 \right) - \tan^{-1} \left(\cosh^2 0 \right)$			
	$=\tan^{-1}\left(\cosh^2 1\right)-\frac{\pi}{4}$	A1	5	AG
	Total		7	
6	Assume result true for $n = k$			
	Then $\sum_{r=1}^{k+1} \frac{2^r \times r}{(r+1)(r+2)}$			SC If no series at all indicated on LHS, deduct 1 and give E0 at end
	$=\frac{2^{k+1}}{k+2}+\frac{2^{k+1}(k+1)}{(k+2)(k+3)}-1$	M1A1		
	$=\frac{2^{k+1}(k+3+k+1)}{(k+2)(k+3)}-1$	M1		Putting over common denominator (not including the -1, unless separated later)
	$=\frac{2^{k+1}2(k+2)}{(k+2)(k+3)}-1$	A1		
	$=\frac{2^{k+2}}{k+3} - 1$	A1		
	$k = 1$: LHS $= \frac{1}{3}$, RHS $= \frac{2^2}{3} - 1$	B1		
	$P_k \Rightarrow P_{k+1}$ and P_1 true	E1	7	Must be completely correct
	Total		7	

MFP2 (cont)	1		1
Q	Solution	Marks	Total	Comments
7(a)	$\frac{d}{dx}\left(\cosh^{-1}\frac{1}{x}\right) = \frac{1}{\sqrt{\frac{1}{x^2} - 1}} \left(-\frac{1}{x^2}\right)$	M1A1		M0 if $\frac{dy}{dx} = f(y)$ and no attempt to substitute back to <i>x</i>
	$=\frac{-1}{x\sqrt{1-x^2}}$	A1	3	AG
(b)(i)	$\frac{\mathrm{d}}{\mathrm{d}}\left(\sqrt{1-x^2}\right) = \frac{-2x}{\sqrt{1-x^2}}$	B1		For numerator $(- z)^{\frac{1}{2}}$
	dx $(2\sqrt{1-x^2})$	B1		For denominator (not $(1-x^2)^2$)
	$\frac{dy}{dx} = \frac{-x}{\sqrt{1 - x^2}} + \frac{1}{x\sqrt{1 - x^2}} = \frac{1 - x^2}{x\sqrt{1 - x^2}} = \frac{\sqrt{1 - x^2}}{x}$	M1 A1	4	For attempt to put over a common denominator AG
(ii)	$s = \int_{\frac{1}{4}}^{\frac{3}{4}} \sqrt{1 + \frac{1 - x^2}{x^2}} \mathrm{d}x = \int_{\frac{1}{4}}^{\frac{3}{4}} \frac{1}{x} \mathrm{d}x$	M1 A1A1		For use of $\sqrt{1 + \left(\frac{dy}{dx}\right)^2}$
	$= \left[\ln x\right]_{\frac{1}{4}}^{\frac{3}{4}}$	M1		
	$= \ln\frac{3}{4} - \ln\frac{1}{4} = \ln 3$	A1	5	AG
	Total		12	
8(a)	Correct multiplication of brackets $e^{i\theta} + e^{-i\theta} = 2\cos\theta$	M1 A1	2	Clearly shown
(b)	$2\cos\theta = 1$	M1		SC If 'hence' not used and, say, $\frac{8}{3} = \frac{4}{3} + 1$. Q is solved by formula loss
	$\theta = \frac{\pi}{2}$	A1		$z^{*}-z$ +1=0 is solved by formula, lose
	$z^4 = e^{\frac{\pi i}{3}} \text{ or } e^{\frac{-\pi i}{3}}$	M1		M1A1, but then continue M1m1 etc if $\frac{\pi}{3}$ is obtained
	$z = e^{\frac{\pi i}{12} + \frac{2k\pi i}{4}}$ or $e^{\frac{-\pi i}{12} + \frac{2k\pi i}{4}}$	m1		
	$e^{\pm \frac{\pi i}{12}}, e^{\pm \frac{7\pi i}{12}}, e^{\pm \frac{5\pi i}{12}}, e^{\pm \frac{11\pi i}{12}}$	A2, 1, 0F	6	A1 if 3 roots correct
(c)	y i i i i i i i i i i i i i i i i i i i	B2,1,0		B1 for 4 roots indicated correctly on a circle. CAO
	Indication that $r = 1$	B1	3	
	Total		11	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MFP2 Further Pure 2

Mark Scheme

2009 examination - June series

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

Μ	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
Α	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m mark	s and is for metl	hod and accuracy			
Е	mark is for explanation					
or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only RA required accuracy					
AWFW	anything which falls within FW further work					
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP2				
Q	Solution	Marks	Total	Comments
1(a)	$z^4 = 16e^{\frac{4\pi i}{12}}$	M1		Allow M1 if $z^4 = 2e^{\frac{4\pi i}{12}}$
	$=16\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)$	A1		OE could be $2ae^{\frac{\pi i}{3}}$ or $2a\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$
	$= 8 + 8\sqrt{3}i; a = 8$	A1F	3	ft errors in 2^4
(b)	For other roots, $r = 2$ $\rho = \frac{\pi}{2k\pi} + \frac{2k\pi}{k\pi}$	B1		for realising roots are of form $2 \times e^{i\theta}$ M1 for strictly correct θ
	$0 = \frac{1}{12} + \frac{1}{4}$	M1A1		i.e must be $\left(\text{their } \frac{\pi}{3} + 2k\pi \right) \times \frac{1}{4}$
	Roots are $2e^{\frac{7\pi i}{12}}$, $2e^{\frac{-5\pi i}{12}}$, $2e^{\frac{-11\pi i}{12}}$	A2,1, 0 F	5	ft error in $\frac{\pi}{12}$ or r $\begin{bmatrix} \operatorname{accept} 2e^{\left(\frac{\pi}{12} + \frac{2k\pi}{4}\right)^{i}} & k = -1, -2, 1 \end{bmatrix}$
	Total		8	
2(a)	$A = \frac{1}{2}, B = -\frac{1}{2}$	B1, B1F	2	For either A or B For the other
(b)	Method of differences clearly shown	M1		
	$\operatorname{Sum} = \frac{1}{2} \left(1 - \frac{1}{2n+1} \right)$	A1		
	$=\frac{n}{2n+1}$	A1	3	AG
(c)	$\frac{1}{2(2n+1)} < 0.001 \text{ or } \frac{n}{2n+1} > 0.499$	M1		Condone use of equals sign
	1 < 0.004n + 0.002 or $n > 0.998n + 0.499$			
	$n > \frac{0.998}{0.004}$ or $0.004n > 0.998$	A1		OE
	<i>n</i> = 250	A1F	3	ft if say 0.4999 used If method of trial and improvement used, award full marks for a completely correct solution showing working
	Total		8	

P2 (cont		1		
<u>Q</u>	Solution	Marks	Total	Comments
3(a)	2 + 3i	B1	1	
(b)(i)	$\alpha\beta=13$	B1	1	
(ii)	$\alpha\beta + \beta\gamma + \gamma\alpha = 25$	M1		M1A0 for -25 (no ft)
	$\gamma(\alpha + \beta) = 12$	A1F		
	$\gamma = 3$	A1F	3	ft error in $\alpha\beta$
(iii)	$p = -\sum \alpha = -7$	M1 A1F		M1 for a correct method for either p or q
	$q = -\alpha\beta\gamma = -39$	A1F	3	ft from previous errors
				for sign errors in <i>p</i> and <i>q</i> allow M1 but A0
	Alternative for (b)(ii) and (iii):			
(ii)	Attempt at $(z - 2 + 3i)(z - 2 - 3i)$	(M1)		
	$z^2 - 4z + 13$	(A1)		
	cubic is $(z^2 - 4z + 13)(z - 3) :: \gamma = 3$	(A1)	(3)	
(iii)	Multiply out or pick out coefficients	(M1)		
	p = -7, q = -39	(A1, A1)	(3)	
	Total)	8	
4(a)	Sketch, approximately correct shape	B1		
	Asymptotes at $y = \pm 1$	B1	2	B0 if curve touches asymptotes lines of answer booklet could be used for asymptotes be strict with sketch
(b)	Use of $u = \frac{\sinh x}{\cosh x}$	M1		
	$= \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} \text{ or } \frac{e^{2x} - 1}{e^{2x} + 1}$	A1		
	$u\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)=\mathrm{e}^{x}-\mathrm{e}^{-x}$	M1		M1 for multiplying up
	$\mathrm{e}^{-x}\left(1+u\right) = \mathrm{e}^{x}\left(1-u\right)$	A1		A1 for factorizing out e's or M1 for attempt at $1+u$ and $1-u$ in terms of e^x
	$e^{2x} = \frac{1+u}{1-u}$	m1		
	$x = \frac{1}{2} \ln \left(\frac{1+u}{1-u} \right)$	A1	6	AG

Q	Solution	Marks	Total	Comments
4(c)(i)	Use of $tanh^2 x = 1 - sech^2 x$	M1		
	Printed answer	A1	2	
(ii)	$(3 \tanh x - 1)(\tanh x - 2) = 0$ $\tanh x \neq 2$	M1 E1		Attempt to factorise Accept tanh $x \neq 2$ written down but not ignored or just crossed out
	$\tanh x = \frac{1}{3}$	A1		
	$x = \frac{1}{2} \ln 2$	M1 A1F	5	ft
	Total		15	
5(a)	$\left(\cos\theta + i\sin\theta\right)^{k+1} =$			
(b)	$(\cos k\theta + i \sin k\theta)(\cos \theta + i \sin \theta)$ Multiply out $= \cos(k+1)\theta + i \sin(k+1)\theta$ True for $n = 1$ shown $P(k) \Rightarrow P(k+1)$ and $P(1)$ true $\frac{1}{z^n} = \frac{1}{\cos n\theta + i \sin n\theta} = \cos n\theta - i \sin n\theta$ $z^n + \frac{1}{z^n} = 2\cos n\theta$	M1 A1 B1 E1 M1A1	5	Any form Clearly shown provided previous 4 marks earned or $z^{-n} = \cos(-n\theta) + i\sin(-n\theta)$ SC $(\cos\theta + i\sin\theta)^{-n}$ quoted as $\cos n\theta - i\sin n\theta$ earns M1A1 only AG
(c)	$z + \frac{1}{z} = \sqrt{2}$ $2\cos\theta = \sqrt{2}$	M1		
	$\theta = \frac{\pi}{4}$	A1		
	$z^{10} + \frac{1}{z^{10}} = 2\cos\left(\frac{10\pi}{4}\right)$	M1		M0 for merely writing $z^{10} + \frac{1}{z^{10}} = 2\cos 10\theta$
	= 0	A1F	4	
	Total		12	

)	r		
Q	Solution	Marks	Total	Comments
6(a)	Centre $-1-i$ or $(-1, -1)$	B1		
	Radius 5	M1 A1F		ft incorrect centre if used
	z+1+i = 5 or z-(-1-i) = 5	A1F	4	ft $ z+1+i = 10$ earns M0B1
(b)				
	C_1 correct centre, correct radius C_2 correct centre, correct radius Touching <i>x</i> -axis	B1F B1 B1F	3	ft errors in (a) but fit circles need to intersect and C_1 enclose $(0,0)$ error in plotting centre
(c)	$O_1 O_2 = 3\sqrt{5}$ Correct length identified Length is $9 + 3\sqrt{5}$	M1A1 m1 M1	5	allow if circles misplaced but O_1O_2 is still $3\sqrt{5}$ ft if <i>r</i> is taken as 10
	Total	AIF	12	
	I otai		14	

	Solution	Marks	Total	Comments
7(a)(i)	$\frac{\mathrm{d}s}{\mathrm{d}x} = \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} = \sqrt{1 + \left(\frac{s}{2}\right)^2}$	M1A1		Allow M1 for $s = \int \sqrt{1 + \left(\frac{s}{2}\right)^2} dx$ then A1 for $\frac{dy}{dx}$
	$=\frac{1}{2}\sqrt{4+s^2}$	A1	3	AG
(ii)	$\int \frac{\mathrm{d}s}{\sqrt{4+s^2}} = \int \frac{1}{2} \mathrm{d}x$	M1		For separation of variables; allow without integral sign
	$\sinh^{-1}\frac{s}{2} = \frac{1}{2}x + C$	A1		Allow if <i>C</i> is missing
	C = 0	A1		
	$s = 2\sinh\frac{1}{2}x$	A1	4	AG if C not mentioned allow $\frac{3}{4}$ SC incomplete proof of (a)(ii), differentiating $s = 2 \sinh \frac{x}{2}$ to arrive at $\frac{ds}{dx} = \frac{1}{2}\sqrt{4+s^2}$ allow M1A1 only $\binom{2}{4}$
(iii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sinh\frac{1}{2}x$	M1		
	$y = 2\cosh\frac{1}{2}x + C$	A1		Allow if <i>C</i> is missing
	C = 0	A1	3	Must be shown to be zero and CAO
(b)	$y^2 = 4\left(1 + \sinh^2\frac{x}{2}\right)$	M1		Use of $\cosh^2 = 1 + \sinh^2$
	$=4+s^2$	A1	2	AG
	Total		12	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MFP2 Further Pure 2

Mark Scheme

2010 examination - January series

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

Key to mark scheme and abbreviations used in marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is	for method and a	accuracy		
Е	mark is for explanation				
$\sqrt{10}$ or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
-x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	с	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

	Solution	Marks	Total	Comments
Q	$\frac{1}{1}(x-x)^2 + \frac{1}{1}(x-x)^2$		10141	Comments
1 (a)	LHS = $\frac{-}{4}(e^{x} + e^{-x}) - \frac{-}{4}(e^{x} - e^{-x})$	M1		
	Correct expansion of either square	A1	2	
	Shown equal to 1	AI	3	AG
(b)(i)	$8\cosh^2 x - 3$	B1	1	
(ii)	Sketch of $y = \cosh x$	B1	1	Must cross <i>y</i> -axis above <i>x</i> -axis
(iii)	$\cosh x = (\pm)1.25$	B1F		OE; ft errors in (b)(i); allow \pm missing
	$x = \ln\left(1.25 + \sqrt{1.25^2 - 1}\right)$	M1		
	$=\ln 2$	A1F		
	$\ln\frac{1}{2}$ by symmetry	A1F	4	Accept -ln 2 written straight down
				Alternatively, if solved by using
				$e^{-1} - 2.5e^{-1} + 1 = 0$, allow M1 for $\left(2.5 + \sqrt{2.5^2 - 4}\right)$
				$x = \ln\left(\frac{2.5 \pm \sqrt{2.5 - 4}}{2}\right)$
	Total		9	
(a)(i)	Circle	B1		
	Correct centre	B1		<i>x</i> -coordinate $\approx -2 \times$ <i>y</i> -coordinate in
	Touching y-axis	B1	3	correct quadrant; condone (4, -2i)
(ii)	Straight line	B1		
	parallel to x-axis	B1		Assume $(0, 1)$ if distance up v-axis is half
	through (0, 1)	B1	3	distance to top of circle; no other shading outside circle
(b)	Shading: inside circle	B1F		
	above line	B1F	2	
				Whole question reflected in <i>x</i> -axis loses 2 marks
	Total		8	

MEDO

Q	Solution	Marks	Total	Comments
3 (a)(i)	$\beta = 2 - 2\sqrt{3}i$	B1	1	
	where 0	2.54		
(ii)	$\alpha \beta \gamma = -8$ $\alpha \beta = 16$	MI		Allow for +8 but not ± 16
	$\mu \rho = 10$	BI		
	$\gamma = -\frac{1}{2}$	A1	3	
(iii)	Either $\frac{-p}{\alpha} = \alpha + \beta + \gamma$			
	2	M1		SC if failure to divide by 2 throughout, allow M1A1 for either <i>p</i> or <i>q</i> correct ft
	or $\frac{q}{2} = \alpha\beta + \beta\gamma + \gamma\alpha$			anow with the child p of q concern
	_			
	p = -7, q = 28	A1F,	3	ft incorrect γ
		AII		
	Alternative to (a)(ii) and (a)(iii):			
	$(z^2-4z+16)(az+b)$	(M1)		
	$\alpha\beta = 16$	(B1)		
	$a=2, b=+1, \gamma = -\frac{1}{2}$	(A1)		
	Equating coefficients	(M1)		
	p = -7	(A1F)		
	q = 28	(A1F)		
	π			
(b)(i)	$r=4, \ \theta=\frac{\pi}{3}$	B1,B1	2	
(ii)	$\left(2+2\sqrt{3}i\right)^n = \left(4e^{\frac{\pi i}{3}}\right)^n$	M1		
(11)				
	$=4^n\left(\cos\frac{n\pi}{1+i\sin\frac{n\pi}{2}}\right)$	A1	2	AG
			_	
	$(- n\pi (n\pi n\pi))$			
(iii)	$\left(2 - 2\sqrt{3}i\right) = 4^n \left(\cos\frac{n\pi}{3} - i\sin\frac{n\pi}{3}\right)$	B1		
	$\alpha^n + Q^n + \alpha^n + 4^n \left(-\pi n\pi + n\pi \right)$			
	$\alpha + \beta + \gamma = 4 \left(\frac{\cos -1}{3} + 1 \sin \frac{1}{3} \right)$			
	$\int d^n \left(\cos n\pi \int \sin n\pi \right) + \left(1 \right)^n$			
	$+4\left(\frac{\cos 3}{3}-1\sin 3\right)+\left(-\frac{1}{2}\right)$	M1		
	$=2^{2n+1}\cos\frac{n\pi}{2}+\left(-\frac{1}{2}\right)^n$	Δ1	3	AG
	$\frac{-2}{3} \cdot \left(\frac{-2}{2}\right)$		5	
	Total		14	

Q	Solution	Marks	Total	Comments
4 (a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \sinh 2t$	B 1		
	$\frac{\mathrm{d}y}{\mathrm{d}t} = 2\cosh t$	B1		
	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = \sinh^2 2t + 4\cosh^2 t$	M1		
	Use of $\sinh 2t = 2\sinh t \cosh t$	m1		Or other correct formula for double angle
	$=4\cosh^2 t \left(\sinh^2 t + 1\right)$	A1		For taking out factor
	$=4\cosh^4 t$	A1F	6	ft errors of sign in $\frac{dx}{dt}$ or $\frac{dy}{dt}$
(b)(i)	$S = 2\pi \int_0^1 2\sinh t \cdot 2\cosh^2 t \mathrm{d}t$	M1		Using the value obtained in (a)
	$=8\pi\int_0^1\sinh t.\cosh^2 t\mathrm{d}t$	A1	2	AG
(ii)	$S = 8\pi \left[\frac{\cosh^3 t}{3}\right]_0^1$	M1		
	$=\frac{8\pi}{3}\left[\cosh^3 1-1\right]$	A1	2	OE eg $\frac{\pi}{3}\left(\left(e+\frac{1}{e}\right)^3-8\right)$
	Total		10	
5(a)(i)	$u_1 = S_1 = 1^2 \cdot 2 \cdot 3 = 6$	B1	1	AG
(ii)	$u_2 = S_2 - S_1 = 42$	B1	1	AG
(iii)	$u_n = S_n - S_{n-1}$	M1		
	$= n^{2} (n+1)(n+2) - (n-1)^{2} n(n+1)$	A1		
	= n(n+1)(4n-1)	A1	3	AG
(b)	$\sum_{r=n+1}^{2n} u_r = S_{2n} - S_n$	M1		
	$= (2n)^{2} (2n+1)(2n+2) - n^{2} (n+1)(n+2)$	A1		
	$=3n^2(n+1)(5n+2)$	A1	3	AG
	Total		8	

Q	Solution	Marks	Total	Comments
6 (a)	$t = \tan \theta$ $dt = \sec^2 \theta d\theta$	B1		OE
	$I = \int \frac{\mathrm{d}t}{\left(9\cos^2\theta + \sin^2\theta\right)\sec^2\theta}$	M1		OE
	$=\int \frac{\mathrm{d}t}{t^2+9}$	A1	3	AG
(b)	$I = \left[\frac{1}{3}\tan^{-1}\frac{t}{3}\right]_0^{\sqrt{3}}$	M1		M1 for \tan^{-1}
	$\frac{1}{3} \tan^{-1} \frac{\sqrt{3}}{3}$ or $\frac{1}{3} \tan^{-1} \frac{1}{\sqrt{3}}$	A1		
	$=\frac{\pi}{2}$	A1	3	AG
	18 Total		6	
7(a)	Assume true for $n = k$		U	
	$u_{k+1} = 2(3 \times 2^{k-1} - 1) + 1$	M1A1		
	$=3\times2^k-1$	A1		$2^{(k-1)+1}$ not necessarily seen
	True for $n = 1$ shown	B1		
	Method of induction clearly expressed	E1	5	Provided all 4 previous marks earned
(b)	$\sum_{r=1}^{n} u_r = \sum_{r=1}^{n} 3 \times 2^{r-1} - n$			
	$=3(2^n-1)-n$	M1A1		M1 for summation, ie recognition of a GP
	$=u_{n+1}-(n+2)$	A1	3	AG
	Total		8	

MFP2 (cont)							
Q	Solution	Marks	Total	Comments			
8(a)(i)	$\left(e^{\frac{2\pi i}{7}}\right)^7 = e^{2\pi i} = 1$	B1	1	Or $z^7 = e^{2k\pi i}$ $z = e^{\frac{2k\pi i}{7}}$ $k = 1$			
(ii)	Roots are $\omega^2, \omega^3, \omega^4, \omega^5, \omega^6$	M1A1	2	OE; M1A0 for incomplete set SC B1 for a set of correct roots in terms of $e^{i\theta}$			
(b)	Sum of roots considered = 0	M1 A1	2	$\begin{cases} \text{ or } \sum_{r=0}^{6} \omega^{6} = \frac{\omega^{7} - 1}{\omega - 1} = 0 \end{cases}$			
(c)(i)	$\omega^2 + \omega^5 = e^{\frac{4\pi i}{7}} + e^{\frac{10\pi i}{7}}$	M1					
	$=\mathrm{e}^{\frac{4\pi\mathrm{i}}{7}}+\mathrm{e}^{\frac{-4\pi\mathrm{i}}{7}}$	A1		Or $\cos\frac{4\pi}{7} + i\sin\frac{4\pi}{7} + \cos\frac{4\pi}{7} - i\sin\frac{4\pi}{7}$			
	$=2\cos\frac{4\pi}{7}$	A1	3	AG			
(ii)	$\omega + \omega^6 = 2\cos\frac{2\pi}{7} ; \omega^3 + \omega^4 = 2\cos\frac{6\pi}{7}$	B1,B1		Allow these marks if seen earlier in the solution			
	Using part (b)	M1					
	Result	A1	4	AG			
	Total		12				
	TOTAL		75				

8

Version 1.0

General Certificate of Education June 2010

Mathematics

MFP2

Further Pure 2

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.
Key to mark scheme and abbreviations used in marking

Μ	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and	d is for method	and accuracy			
E	mark is for explanation					
\sqrt{or} ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
-x EE	deduct x marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MFP2				
Q	Solution	Marks	Total	Comments
1(a)	$\frac{9(e^{x}-e^{-x})}{2}-\frac{e^{x}+e^{-x}}{2}$	M1		M0 if $\cosh x$ mixed up with $\sinh x$
	$=4e^{x}-5e^{-x}$	A1	2	AG
(b)	Attempt to multiply by e^x	M1		
	$4e^{2x} - 8e^x - 5 = 0$	A1		
	$(2e^x - 5)(2e^x + 1) = 0$	M1		ft provided quadratic factorises (or use of formula)
	$e^x \neq -\frac{1}{2}$	E1F		PI but not ignored
	$e^x = \frac{5}{2}$	A1F		
	$\tanh x = \frac{\frac{5}{2} - \frac{2}{5}}{\frac{5}{5} - \frac{2}{5}} = \frac{21}{2}$	M1	_	M1 PI for attempt to use $\tanh x = \frac{\sinh x}{\cosh x}$
	$\frac{5}{2} + \frac{2}{5}$ 29	AIF	1	or equivalent fraction
	Total		9	
2(a)	$\frac{1}{r(r+2)} = \frac{A}{r} + \frac{B}{r+2}$	M1		
	$A = \frac{1}{2}, B = -\frac{1}{2}$	A1, A1F	3	ft incorrect A
(b)	$r = 1$ $\frac{1}{1.3} = \frac{1}{2} \left(\frac{1}{1} - \frac{1}{3} \right)$			
	$r=2$ $\frac{1}{2.4} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{4} \right)$			
	$r = 3$ $\frac{1}{3.5} = \frac{1}{2} \left(\frac{1}{3} - \frac{1}{5} \right)$	M1		3 rows (PI) numerical values only
	$r = 48 \frac{1}{48.50} = \frac{1}{2} \left(\frac{1}{48} - \frac{1}{50} \right)$	A1F		Last row – could be implied
	Cancelling appropriate pairs	M1		
	$Sum = \frac{1}{2} \left(\frac{1}{1} + \frac{1}{2} - \frac{1}{49} - \frac{1}{50} \right)$	A1F		Allow if the $\frac{1}{2}$ is missing only
	$=\frac{894}{1225}$	A1	5	CAO (or equivalent fraction)
	Total		8	

MFP2 (cont				
Q	Solution	Marks	Total	Comments
3	Im (2,2) Re			
(a)	2+2i+1+3i = 2+2i-5-7i	B1		Clearly shown do not allow $ 3+5i = -3-5i $ without comment
	$\arg(2+2i) = \frac{\pi}{4}$	B1	2	Clearly shown
(b)	L_1 : straight line with negative gradient perpendicular to line joining	B1		
	(-1, -3) to $(5, 7)$	B1		
	through $(2,2)$	B1		The point $(2,2)$ must be shown either by $(2,2)$ or $2+2i$ or with numbered axes
	L_2 : half line through O	B1		
	through $(2,2)$	B1	5	
(c)	Shading between $\frac{\pi}{4}$ and $\frac{\pi}{2}$	B1	2	No marks for shading if circles drawn in (b)
		DI	 0	
4(a)	$\frac{\alpha + \beta + \gamma = 2}{\alpha + \beta + \gamma = 2}$	B1	1	
(b)(i)	α is a root and so satisfies the equation	E1	1	
(ii)	$\sum \alpha^3 - 2\sum \alpha^2 + p\sum \alpha + 30 = 0$	M1A1		
	Substitution for $\sum \alpha^3$ and $\sum \alpha$	ml		
	$\sum \alpha^2 = p + 13$	A1	4	AG
(iii)	$\left(\sum \alpha\right)^2 = \sum \alpha^2 + 2\sum \alpha \beta$ used	M1		do not allow this M mark if used in (b)(ii)
	p = -3	A1	2	AG
(c)(i)	f(-2) = 0	M1		
	$\alpha = -2$	A1	2	
(ii)	$(z+2)(z^2-4z+5)=0$	M1		For attempting to find quadratic factor
	$z = \frac{4 \pm \sqrt{-4}}{2}$	m1		Use of formula or completing the square m0 if roots are not complex
	$=2\pm i$	A1	3	CAO
	Total		13	

Q	Solution	Marks	Total	Comments
5(a)(i)	Divide $\cosh^2 t - \sinh^2 t = 1$ by $\cosh^2 t$	M1		Or $\frac{\sinh^2 t}{\cosh^2 t} + \frac{1}{\cosh^2 t}$
	Rearrange	A1	2	AG If solved back to front with no conclusion ending $\cosh^2 t - \sinh^2 t = 1$ B1 only
(ii)	$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\sinh t}{\cosh t}\right) = \frac{\cosh^2 t - \sinh^2 t}{\cosh^2 t}$	M1A1		
	$= \operatorname{sech}^2 t$	A1	3	AG
(iii)	$\frac{\mathrm{d}}{\mathrm{d}t}(\operatorname{sech} t) = -\left(\cosh t\right)^{-2}\sinh t$	M1A1		Allow A1 if negative sign missing
	$=-\operatorname{sech} t \tanh t$	A1	3	AG
(b)(i)	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = \operatorname{sech}^4 t + \operatorname{sech}^2 t \tanh^2 t$	M1		Allow slips of sign before squaring for this M1
	Use of $\tanh^2 t + \operatorname{sech}^2 t = 1$ = $\operatorname{sech}^2 t$	m1 A1		Correct formula only for m1
	$\therefore s = \int_0^{\frac{1}{2}\ln 3} \operatorname{sech} t \mathrm{d}t$	A1	4	AG (including limits)
(ii)	$u = e^t du = e^t dt$	B1		
	$\int \operatorname{sech} t \mathrm{d}t = \int \frac{2}{u^2 + 1} \mathrm{d}u$	M1A1		CAO M1 for putting integrand in terms of u (no sech (ln u))
	$\left[2\tan^{-1}u\right]$	A1		Or $2\tan^{-1}e^t$
	Change limits correctly or change back	m1		At some stage
	$=\frac{2\pi}{3} - \frac{2\pi}{4} = \frac{\pi}{6}$	A1	6	САО
	Total		18	
6(a)	$\frac{1}{(k+2)!} = \frac{k+3}{(k+3)!}$	M1		
	Result	A1	2	
(b)	Assume true for $n = k$			
	For $n = k + 1$ $\sum_{r=1}^{k+1} \frac{r \times 2^r}{(r+2)!} = 1 - \frac{2^{k+1}}{(k+2)!} + \frac{(k+1)2^{k+1}}{(k+3)!}$	M1A1		If no LHS of equation, M1A0
	$= 1 - 2^{k+1} \left(\frac{1}{(k+2)!} - \frac{k+1}{(k+3)!} \right)$	m1		m1 for a suitable combination clearly shown
	$=1-\frac{2^{m-1}}{(k+3)!}$	A1		clearly shown or stated true for $n = k + 1$
	True for $n = 1$	B1	~	Shown
	Method of induction set out properly	EI	6 8	Provided previous 5 marks all earned
	Total		U	<u> </u>

MFP2 (cont	MFP2 (cont)					
Q	Solution	Marks	Total	Comments		
7(a)(i)	$1 + \sqrt{3}i = 2e^{\frac{\pi i}{3}}$	B1		B1 both correct		
	$1 - i = \sqrt{2} e^{-\frac{\pi i}{4}}$	B1B1	3	OE		
(ii)	$2^{\frac{21}{2}}$ or equivalent single expression	B1F		No decimals; must include fractional powers		
	Raising and adding powers of e	M1				
	$\frac{17\pi}{12}$ or equivalent angle	AIF	3	Denominators of angles must be different		
(b)	$z = \sqrt[3]{2^{10}\sqrt{2}} e^{\frac{17\pi i}{36} + \frac{2k\pi i}{3}}$	M1				
	$\sqrt[3]{2^{10}\sqrt{2}} = 8\sqrt{2}$	B1		CAO		
	$\theta = \frac{17\pi}{36}, -\frac{7\pi}{36}, -\frac{31\pi}{36}$	A2,1F	4	Correct answers outside range: deduct 1 mark only		
	Total		10			
	TOTAL		75			

7

Version 1.0

General Certificate of Education (A-level) January 2011

Mathematics

MFP2

(Specification 6360)

Further Pure 2

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Mark Scheme – General Certificate of Education (A-level) Mathematic	cs – Further Pure 2 – January 2011
---	------------------------------------

MFP2				
Q	Solution	Marks	Total	Comments
1(a)	y Circle correct centre through $(0, 0)$	B1 B1 B1	3	
(b)(i)	z_1 correctly chosen	B1F	1	ft if circle encloses (0, 0)
(ii)	$ z_1 = 8$	B1F	1	ft if centre misplotted
	Total		5	
2(a)	u - u =			
	$\frac{1}{6}r(r+1)(4r+11) - \frac{1}{6}(r-1)r(4r+7)$	M1		
	Correct expansion in any form, eg $\frac{1}{2}r(4r^2 + 15r + 11 - 4r^2 - 3r + 7)$	A1		
	= r(2r+3)	A1	3	AG
(b)	Attempt to use method of differences $S_{100} = u_{100} - u_0$ = 691850	M1 A1 A1	3	САО
	Total		6	
3 (a)	$(x,y)^2$ (x,y) \sqrt{x} $\frac{\pi i}{2}$	D 1	, , , , , , , , , , , , , , , , , , ,	
	$(1+1) = 21$ or $(1+1) = \sqrt{2} e^{4}$	BI		
	2i(1+i) = 2i - 2	B1	2	AG
				Alternative method:
				$(1+i)^3 = 1+3i+3i^2+i^3$ B1
				-2; 2 P1
				-2I-2 B1
(b)(i)	Substitute $z = 1 + i$ Correct expansion k = -5	M1 A1	3	allow for correctly picking out either the real or the imaginary parts
		711	5	
(ii)	$\beta + \gamma = 5 + i - \alpha = 4$	B1	1	AG
(iii)	$\alpha\beta\gamma = 5(1+i)$	M1		allow if sign error
()	$\beta \gamma = 5$	A1F		ft incorrect k

	$z^2 - 4z + 5 = 0$	M1		
	Use of formula or $(z-2)^2 = -1$	A1F		No ft for real roots if error in k
	$z = 2 \pm i$	A1F	5	
	NB allow marks for (b) in			
	whatever order they appear			
	Total		11	

Mark Scheme – General Certificate of Education (A-level) Mathematics – Further Pure 2 – January 2011

MFP2 (cont	2 (cont)					
Q	Solution	Marks	Total	Comments		
4 (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 12\sinh x - 8\cosh x - 1$	B1		The B1 and M1 could be in reverse order if put in terms of e first		
	$12\frac{(e^{x}-e^{-x})}{2}-8\frac{(e^{x}+e^{-x})}{2}-1=0$	M1		M0 if $\sinh x$ and $\cosh x$ in terms of e^x are interchanged		
	$2e^{2x} - e^x - 10 = 0$	A1F		ft slips of sign		
	$(2e^{x}-5)(e^{x}+2)=0$	M1A1F		ft provided quadratic factorises		
	$e^x \neq -2$	E1		some indication of rejection needed		
	$x = \ln \frac{5}{2}$ one stationary point	A1F	7	Condone $e^x = \frac{5}{2}$ with statement provided quadratic factorises		
				Special Case		
				If $\frac{dy}{dx} = 12 \sinh x - 8 \cosh x$ B0		
				For substitution in terms of e^x M1		
				leading to $e^{2x} = 5$ A1		
				Then M0		
(b)	$b = 12 \frac{\left(\frac{5}{2} + \frac{2}{5}\right)}{2} - 8 \frac{\left(\frac{5}{2} - \frac{2}{5}\right)}{2} - \ln \frac{5}{2}$	M1A1F		for substitution into original equation		
	$=\frac{174}{10}-\frac{84}{10}-\ln\frac{5}{2}$	A1		CAO		
	=9-a	A1	4	AG; accept $b = 9 - a$		
	Total		11			
5(a)	$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2} \left(1 - x^2 \right)^{-\frac{1}{2}}$	B1				
	$\times (-2x)$	B1	2			
(b)	$\int \sin^{-1} x \mathrm{d}x = x \sin^{-1} x - \int \frac{x}{\sqrt{1 - x^2}} \mathrm{d}x$	M1 A1A1		A1 for each part of the integration by parts		
	$\int -\frac{x}{\sqrt{1-x^2}} \mathrm{d}x = \sqrt{1-x^2} \mathrm{used}$	A1F		ft sign error in $\frac{du}{dx}$		
	$\frac{\sqrt{3}}{2}\frac{\pi}{3} + \sqrt{1 - \frac{3}{4}} - 1$	ml		substitution of limits		
	$\frac{1}{6}\sqrt{3}\pi - \frac{1}{2}$	A1	6	CAO		
	Total		8			

Mark Scheme – General	Certificate of Education	(A-level) Mathematics	- Further Pure 2 -	- January 2011
Man Conona Conona	Continuate of Education			

MFP2 (cont)			
Q	Solution	Marks	Total	Comments
6(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \sec t - \cos t$	B1,B1		use of FB for sec <i>t</i> ; if done from first principles, allow B1 when sec <i>t</i> is arrived at
	Use of $1 - \cos^2 t = \sin^2 t$	M1		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \sin t \tan t$	A1	4	AG
(b)	$\dot{x}^2 + \dot{y}^2 = \sin^2 t \tan^2 t + \sin^2 t$	M1A1		sign error in $\frac{dy}{dt}$ A0
	Use of $1 + \tan^2 t = \sec^2 t$	m1		
	$\sqrt{\dot{x}^2 + \dot{y}^2} = \tan t$	A1F		ft sign error in $\frac{dy}{dt}$
	$\int_{0}^{\frac{\pi}{3}} \tan t dt = \left[\ln \sec t\right]_{0}^{\frac{\pi}{3}}$	A1F		ft sign error in $\frac{dy}{dt}$
	$=\ln 2$	A1	6	CAO
	Total		10	
7 (a)	f(k+1) - 5f(k)			
	$=12^{k+1}+2\times 5^{k}-5(12^{k}+2\times 5^{k-1})$	M1		
	$=12^{k+1} + 2 \times 5^{k} - 5 \times 12^{k} - 2 \times 5^{k}$	A1		for expansion of bracket $5 \times 5^{k-1} = 5^k$ used
	$=12\times12^{k}-5\times12^{k}=7\times12^{k}$	A1	3	clearly shown
(b)	Assume $f(k) = M(7)$			
	Then $f(k+1) = 5f(k) + M(7)$	M1		Not merely a repetition of part (a)
	=M(7)	A1		clearly shown
	f(1) = 12 + 2 = 14 = M(7)	B1		
	Correct inductive process	E1	4	(award only if all 3 previous marks earned)
	Total		7	

Mark Scheme – General Certificate of Education (A-level) Mathematics – Further Pure 2 – January 2011

MFP2 (cont)						
Q	Solution	Marks	Total	Comments		
8 (a)(i)	$4\left(1+i\sqrt{3}\right) = 8\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)$	M1		for either $4(1+i\sqrt{3})$ or $4(1-i\sqrt{3})$ used		
	$=8e^{\frac{\pi i}{3}}$	A1		If either $r \text{ or } \theta$ is incorrect but the same value in both (i) and (ii) allow A1 π		
	- <i>T</i> i			but for θ only if it is given as $\frac{\pi}{6}$		
(ii)	$4\left(1-i\sqrt{3}\right)=8e^{\frac{\pi}{3}}$	A1	3			
(b)	$z^3 - 4 = \pm \sqrt{-48}$	M1		taking square root		
	$z^3 = 4 \pm 4\sqrt{3}i$	A1	2	AG		
(c)(i)	$z = 2e^{\frac{\pi i}{3} + 2k\pi i}$ or $z = 2e^{\frac{-\pi i}{3} + 2k\pi i}$	B1F M1		for the 2; ft incorrect 8, but no decimals for either, PI		
	$z = 2e^{\frac{\pi i}{9}}, 2e^{\frac{7\pi i}{9}}, 2e^{\frac{5\pi i}{9}}$ $= 2e^{\frac{-\pi i}{9}}, 2e^{\frac{-7\pi i}{9}}, 2e^{\frac{-5\pi i}{9}}$	A3.2.1F	5	Allow A1 for any 2 roots not +/- each other Allow A2 for any 3 roots not +/- each other Allow A3 for all 6 correct roots		
(ii)				Deduct A1 for each incorrect root in the interval; ignore roots outside the interval ft incorrect r		
	Radius 2	B1F		clearly indicated; ft incorrect r allow B1 for 3 correct points		
	0 2 Plotting roots	B2,1	3	condone mes		
(d)(i)	Sum of roots = 0 as coefficient of $z^5 = 0$	E1	1	OE		
(ii)	Use of, say, $\frac{1}{2}\left(e^{\frac{\pi i}{9}} + e^{\frac{-\pi i}{9}}\right) = \cos\frac{\pi}{9}$	M1				
	$\cos\frac{3\pi}{9} = \frac{1}{2}$ used	A1				
	$\cos\frac{\pi}{9} + \cos\frac{3\pi}{9} + \cos\frac{5\pi}{9} + \cos\frac{7\pi}{9} = \frac{1}{2}$	A1	3	AG		
	Total		17			
	ТОТАL		75			

Version 1.0

General Certificate of Education (A-level) June 2011

Mathematics

MFP2

(Specification 6360)

Further Pure 2

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MFP2				
Q	Solution	Marks	Total	Comments
1(a)	Im			Use average of whole question if 2 diagrams used
(i)	Circle correct centre touching <i>x</i> -axis	B1 B1 B1F	3	Circle in any position Must be shown ft incorrect centre
(ii)	half-line through $(0, -2)$ through point of contact of circle with <i>x</i> -axis	B1 B1 B1	3	Can be inferred
(b)	Inside circle On line Total	B1 B1F	2	ft errors in position of line and circle
2(a)	$\frac{(e^{x} + e^{-x})(e^{y} + e^{-y})}{2} - \frac{(e^{x} - e^{-x})(e^{y} - e^{-y})}{2}$	M1A1		M0 if sinh and cosh confused M1 for formula quoted correctly
	Correct expansions = $\frac{1}{2} \left(e^{x-y} + e^{-(x-y)} \right) = \cosh(x-y)$	A1 A1	4	Use of e ^{xy} A0 AG
(b)(i)	$\cosh(x - \ln 2) = \cosh x \cosh(\ln 2)$ $-\sinh x \sinh(\ln 2)$	M1		Alternative: $\frac{e^{x-\ln 2} + e^{-x+\ln 2}}{2} = \frac{e^{x} - e^{-x}}{2} M1$
	$\cosh(\ln 2) = \frac{3}{4}$ any method $\sinh(\ln 2) = \frac{3}{4}$	B1		Both correct $e^{x-\ln 2} = \frac{e^x}{2}$ or $e^{-x+\ln 2} = 2e^{-1}$ used B1
	$\frac{5}{4}\cosh x = \frac{7}{4}\sinh x$	A1F		$e^x = \sqrt{6}$ A1
	$\tanh x = -\frac{1}{7}$ $u = \frac{1}{1} \ln \left(1 + \frac{5}{7} \right) = e^{x} - e^{-x} = 5$	Al	4	AG $\tanh x = \frac{1}{7}$ A1
(ii)	$ x = \frac{1}{2} \ln \left(\frac{1}{1 - \frac{5}{7}} \right) \text{ or } \frac{1}{e^{x} + e^{-x}} = \frac{1}{7} $ $ = \frac{1}{7} \ln 6 $	Μ1 Δ1	2	Could be embedded in (b)(i)
	2	411	<i>2</i>	
	Total		10	

Q	Solution	Marks	Total	Comments
3 (a)	(r+1)! = (r+1)r(r-1)!	M1		
	Result	A1	2	AG
(b)	Attempt to use method of differences n	M1		
	$\sum_{r=1}^{\infty} (r^2 + r - 1)(r - 1)! = (n + 1)! + n! - 1! - 0!$	A1		
	(n+1)! = (n+1)n!	m1		Must be seen
	(n+2)n!-2	A1	4	AG
	Total		6	
4(a)(i)	$\sum \alpha = 2$	B1		
	$\sum \alpha \beta = 0$	B1	2	
(ii)	$\sum \alpha^2 = (\sum \alpha)^2 - 2\sum \alpha \beta$	M1		Used. Watch $\sum \alpha = -2$ (M1A0)
	= 4	Al	2	AG
(iii)	Clear explanation	E1	1	eg α satisfies the cubic equation since it is a root. Accept $z = \alpha$
(iv)	$\sum \alpha^3 = 2 \sum \alpha^2 - 3k$	M1		Or $\sum \alpha^3 = (\sum \alpha)^3 - 3\sum \alpha \sum \alpha \beta + 3\alpha \beta \gamma$
	= 8 - 3k	A1	2	AG
(b)(i)	$\alpha^4 = 2\alpha^3 - k\alpha$	B1		
	$\sum \alpha^4 = 2 \sum \alpha^3 - k \sum \alpha$	M1		Or $\sum \alpha^4 = (\sum \alpha^2)^2 - 2(\sum \alpha \beta)^2 + 4\alpha \beta \gamma \sum \alpha$
	= 2(8-3k) - 2k	A1		ft on $\sum \alpha = -2$
	k = 2	A1	4	AG
(ii)	$\sum \alpha^5 = 2 \sum \alpha^4 - k \sum \alpha^2$	M1		
	Substitution of values	A1		
	= -8	A1	3	
	Total		14	

	MFP2 ((cont)
--	--------	--------

Q	Solution	Marks	Total	Comments
5(a)	$2y\frac{\mathrm{d}y}{\mathrm{d}x} = 2x$	B1		Or $\frac{dy}{dx} = x(x^2 + 8)^{-\frac{1}{2}}$
	$S = 2\pi \int_0^6 y \sqrt{1 + \frac{x^2}{y^2}} \mathrm{d}x$	M1 A1F		M1 for use of formula provided $\frac{dy}{dx}$ is a function of x
				A1 for substitution for $\frac{dy}{dy}$ (one slip)
	Eliminating all y	m1		ů.
	$=2\sqrt{2\pi}\int_{-\infty}^{6}\sqrt{x^{2}+4} dx$	A1	5	AG
	J 0 v			
(b)	$dx = 2\cosh\theta \ d\theta \ or \ \frac{dx}{d\theta} = 2\cosh\theta$	B1		
	$S = 2\sqrt{2}\pi \int \sqrt{4\sinh^2 x + 4} \cdot 2\cosh\theta \mathrm{d}\theta$	M1		For eliminating x completely and use of $d\theta$, ie $d\theta$ attempted
	$S = \left(2\sqrt{2}\right) \pi \int 2\cosh\theta \cdot 2\cosh\theta \mathrm{d}\theta$	m1		Use of $\cosh^2 \theta - \sinh^2 \theta = 1$ (ignore limits)
	$=4\sqrt{2}\pi\int(\cosh 2\theta+1)\mathrm{d}\theta$	m1		Use of formula for $\cosh 2\theta$; must be correct
	$=4\sqrt{2}\pi\left[\frac{\sinh 2\theta}{2}+\theta\right]$	B1F		Correct integration of $a \cosh 2\theta + b$
	$= 4\sqrt{2}\pi [\sinh\theta\cosh\theta + \theta]$	m1		Use of $\sinh 2\theta = 2\sinh\theta\cosh\theta$ Must be seen
	$= 4\sqrt{2} \pi \left[\frac{x}{2} \sqrt{\frac{x^2}{4} + 1} + \sinh^{-1} \frac{x}{2} \right]_0^6$	M1		Or change limits
	$=\pi\left[24\sqrt{5}+4\sqrt{2}\sinh^{-1}3\right]$	A1	8	AG
	Total		13	
6(a)	Expansion of $(k+1)(4(k+1)^2-1)$	M1		Any valid method – first step correct
	$=4k^{3}+12k^{2}+11k+3$	A1	2	AG
(b)	Assume true for $n = k$ For $n = k + 1$:			
	$\sum_{r=1}^{k+1} (2r-1)^2 = \frac{1}{3}k(4k^2-1) + (2k+1)^2$	M1A1		No LHS M1A0
	$=\frac{1}{3}(4k^3+12k^2+11k+3)$	A1F		ft error in $(2k + 1)$
	$=\frac{1}{3}(k+1)(4(k+1)^2-1)$	A1		Using part (a)
	True for $n = 1$ shown	B1		
	Proof by induction set out properly (if factorised by 3 linear factors, allow A 1	E1	6	Dependent on all marks correct
	at this particular point)			
	Total		8	

MFP2 ((cont)
--------	--------

Q	Solution	Marks	Total	Comments
7(a)(i)	$\cos 5\theta + \mathrm{i}\sin 5\theta = \left(\cos \theta + \mathrm{i}\sin \theta\right)^5$	M1		Attempt to expand 3 correct terms
	Expansion in any form	A1		Correct simplification
	Equate real parts:	m1		
	$\cos 5\theta = \cos^{5} \theta - 10\cos^{5} \theta \sin^{2} \theta + 5\cos \theta \sin^{5} \theta$	Al		AG
	Equate imaginary parts: $\sin 5\theta = 5\cos^4 \theta \sin \theta - 10\cos^2 \theta \sin^3 \theta + \sin^5 \theta$	A 1	5	CAO
			5	CAU
(**)	$\tan 50 = \sin 5\theta$	M1		The
(11)	$\tan 3\theta = \frac{1}{\cos 5\theta}$	IVI I		Used
	Division by $\cos^5 \theta$ or by $\cos^4 \theta$	m1		
	$\tan \theta \left(5 - 10 \tan^2 \theta + \tan^4 \theta \right)$	A 1	3	46
	$\tan 3\theta = \frac{1}{1 - 10\tan^2\theta + 5\tan^4\theta}$	AI	3	AU
(b)	$\theta = \frac{\pi}{2} \Rightarrow \tan 5\theta = 0$	M1		Or for $\tan^4 \theta - 10 \tan^2 \theta + 5 = 0$
	5			
	$\therefore \tan \frac{\pi}{5}$ satisfies $t^4 - 10t^2 + 5 = 0$	A1		Or for $\tan 5\theta = 0$
	$k\pi$ k^2 k^2	D 1	2	
	Other roots $\tan \frac{\pi}{5}$ $k=2, 3, 4$	BI	3	OE
		N(1		
(C)	Product of roots = 5 $\pi = 4\pi$	MI		2π 3π
	$\tan\frac{\pi}{5} = -\tan\frac{\pi}{5}$	B1		Or $\tan \frac{2\pi}{5} = -\tan \frac{3\pi}{5}$
	$\pi_{1}^{2}\pi_{2}^{2}\pi_{5}^{2}$. 1		
	$\tan \frac{-\tan -\pi}{5} = 5$	AI		
	$\tan\frac{\pi}{2}\tan\frac{2\pi}{2} = \pm\sqrt{5}$	A1		
	5 5	E1	5	
	- sign rejected with reason	EI	5	Alternative (c)
				Use of quadratic formula M1
				$t^2 = 5 \pm 2\sqrt{5} \qquad \qquad \text{A1}$
				$t = \pm \sqrt{5 \pm 2\sqrt{5}} \qquad \qquad B1$
				Correct selection of +ve values E1
				Multiplied together to get $\sqrt{5}$ A1
	Total		16	
	TOTAL		75	

Version 1.0

General Certificate of Education (A-level) January 2012

Mathematics

MFP2

(Specification 6360)

Further Pure 2

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
– <i>x</i> EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Q	Solution	Marks	Total	Comments
1(a)	y			
	Sketch $y = \sinh x$	B1		gradient > 0 at $(0, 0)$; no asymptotes
	Sketch $y = \operatorname{sech} x$:			
	Symmetry about $x = 0$ with max point	B1		
	Asymptote $y = 0$	B1 D1	4	must not cross <i>x</i> -axis
	Point (0, 1) marked or implied	BI	4	
(b)	$\sinh x = \frac{1}{\cosh x}$	M1		
	$\sinh 2x = 2$	M1		use of double angle formula
	Use of ln	ml		dependent on previous M2
	$x = \frac{1}{2} \ln \left(2 + \sqrt{5} \right)$	A1	4	
	or			
	$\frac{1}{2}(e^{2x}-e^{-2x})=2$ OE	(M1)		incorrect sinh x , cosh x M0 (no marks)
	$e^{4x} - 4e^{2x} - 1 = 0$	(M1)		ie multiply by e^{2x} and rewrite
	Correct use of formula	(m1)		
	Result	(A1)	(4)	
	Total		8	

Q	Solution	Marks	Total	Comments
2(a)	∱ Im			
	z_1 Re			
	Half-line with gradient < 1	B1	1	condone a short line, ie it stops at or inside circle
(b)(i)	Circle centre on <i>L</i> , <i>x</i> -coord 6 indicated touching Re $z = 0$ not at (0, 0)	B1 B1	2	not touching Re axis
(ii)	y-coord of centre is $2\sqrt{3}$ or $\frac{6}{\sqrt{3}}$	B1		OE; PI
	$z_0 = 6 + 2\sqrt{3}$ i, k = 6	B1F, B1	3	ft error in coords of centre
(iii)	Point z_1 shown	B1	5	PI
	$\arg \pi_1 = -\frac{1}{6}$	B1	2	
	Total		8	
3 (a)	$\frac{dy}{dx} = \frac{1}{2 \tanh x}$	B1		
	$\times \operatorname{sech}^2 x$	B1		
	$=\frac{1}{2\sinh x\cosh x}$	M1		for expressing in terms of sinh <i>x</i> and cosh <i>x</i>
	$=\frac{1}{\sinh 2x}$	A1	4	AG; PI by previous line
(b)	$\sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} = \sqrt{1 + \frac{1}{\sinh^2 2x}}$	M1		use of formula; accept $$ inserted at any stage
	$=\sqrt{\frac{\cosh^2 2x}{\sinh^2 2x}}$	ml		relevant use of $\cosh^2 - \sinh^2 = 1$
	$=\frac{\cosh 2x}{\sinh 2x}$	A1		OE
	Integral is $\frac{1}{2} \ln \sinh 2x$	M1A1		M1 for ln sinh
	$\sinh(2\ln 4) = \frac{255}{32}$ $\sinh(2\ln 2) = \frac{15}{8}$	B1B1		PI
	$s = \frac{1}{2} \ln\left(\frac{17}{4}\right)$	A1F	8	ft error in $\frac{1}{2}$
	Total		12	

Q	Solution	Marks	Total	Comments
4	Assume result true for $n = k$			
	Then $u_{i,j} = \frac{3}{2}$			
	$4 - \left(\frac{3^{k+1}-3}{3^{k+1}-3}\right)$	M1		
	$(3^{k+1}-1)$			
	$=\frac{3(3^{k+1}-1)}{2}$	Δ1		
	$4(3^{k+1}-1) - (3^{k+1}-3)$			
	$4 \times 3^{k+1} - 3^{k+1} = 3^{k+2}$	A1		clearly shown
	$u_{k+1} = \frac{3^{k+2} - 3}{3^{k+2} - 1}$	A1		
	$n=1$ $\frac{3^2-3}{3}=\frac{3}{2}=\mu$	B1		
	$3^2 - 1 4$	51	<i>.</i>	
	Induction proof set out properly Total	EI	6	must have earned previous 5 marks
	ρπi	DI	U	
5	Numerator $=e^{\overline{8}}$	BI		
	Denominator $= e^{\frac{-q\pi i}{12}}$	B1		
	Fraction = $e^{\frac{p\pi i}{8} + \frac{q\pi i}{12}}$	M1		allow for attempt to subtract powers
	$=\mathrm{e}^{\frac{\pi\mathrm{i}}{24}(3p+2q)}$	A1		
	$i - e^{\frac{12\pi i}{24}}$	ml		OE
	3p + 2q = 12	A1F		ft errors of sign or arithmetic slips
	p = 2, q = 3	Al	7	CAO
	Alternative 1			
	Numerator = $\cos \frac{p\pi}{8} + i \sin \frac{p\pi}{8}$	(B1)		
	Denominator = $\cos \frac{-q\pi}{12} + i \sin \frac{-q\pi}{12}$	(B1)		needs more than just $\cos \frac{q\pi}{12} - \sin \frac{p\pi}{12}$
	Fraction =	(M1)		
	$\left(\cos\frac{p\pi}{8} + i\sin\frac{p\pi}{8}\right)\left(\cos\frac{q\pi}{12} + i\sin\frac{q\pi}{12}\right)$	(111)		
	$= \cos \frac{\pi}{24} (3p + 2q) + i \sin \frac{\pi}{24} (3p + 2q)$	(A1)		
	$= i \text{ if } \cos \frac{\pi}{24} (3p+2q) = 0$			
	or $\sin \frac{\pi}{24} (3p + 2q) = 1$	(m1)		
	3p + 2q = 12	(A1F)		
	p = 2, q = 3	(A1)	(7)	CAO
	Alternative 2 LUS $p\pi$ is $p\pi$	(D 1)		
	LHS $\cos \frac{1}{8} + 1\sin \frac{1}{8}$	(B1)		
	RHS $1\cos\frac{4\pi}{12} + \sin\frac{4\pi}{12}$	(B1)		
	$\cos \frac{p\pi}{8} = \sin \frac{q\pi}{12}$ or $\sin \frac{p\pi}{8} = \cos \frac{q\pi}{12}$	(M1)		
	Introduction of $\frac{\pi}{2}$	(m1)		
	$p\pi = \pi - q\pi$	(A1)		
	$8 - \frac{1}{2} - \frac{1}{12}$	(AI)		
	3p + 2q = 12	(A1F)	<i></i> `	
	p = 2, q = 3	(A1)	(7)	CAO (correct answers, insufficient working 3/7 only)
	Total		7	<u> </u>

Q	Solution	Marks	Total	Comments
6(a)	$7 + 4x - 2x^2 = 9 - 2(x - 1)^2$	M1A1	2	
(b)	Put $u = \sqrt{2(x-1)}$	M1		allow $u = k(x-1)$ any k
	$\mathrm{d}u = \sqrt{2} \mathrm{d}x$	A1F		
	$I = \frac{1}{1} \int \frac{du}{du}$	A 1 E		ft error in (a); must have u^2 only, ie $\frac{1}{\sqrt{2}}$
	$1 - \sqrt{2} \int \sqrt{9 - u^2}$	AIF		$\sqrt{2}$ outside integrand
	$1 \operatorname{dim}^{-1} u$. 1		for $\sin^{-1} u$
	$=\frac{1}{\sqrt{2}}\sin \frac{1}{3}$	AI		$\frac{101}{p}$
	Change limits or replace u	m1		provided sin ⁻¹
	$=\frac{\pi}{\sqrt{2}}$ or $\frac{\pi\sqrt{2}}{2}$	A1	6	САО
	4√2 8			
	Alternative – if integration is attempted			
	without substitution:			
	sin ⁻¹	(M1)		
	1	(A1F)		
	$\sqrt{2}$			
	(x-1)	(AI)		
	$\frac{\sqrt{2}}{3}$	(A1F)		
	Substitution of limits	(m1)		
	<u></u>	(A1)	(6)	CAO
	4√2	()	(•)	
7(-)	$\frac{1}{10tal}$	N/1	8	
/(a)	Use of $(\angle \alpha) = \angle \alpha + 2 \angle \alpha \rho$	A1	2	AG
			2	
(b)	p = 0, q = 5 + 6i	B1,B1	2	
(c)(i)	Substitute 3i for z or use $3i\beta\gamma = -r$	M1		allow for $3i\beta\gamma = r$
	$-271+151-18+r=0 \text{ or } \beta\gamma = 5+61+\alpha^2$ r-18+12i	Al AlF	3	any form
	/ = 10 + 121		5	
(ii)	Cubic is $(z-3i)(z^2+3iz-4+6i)$	M1A1	2	clearly shown
	or use of $\beta \gamma$ and $\beta + \gamma$			
(iii)	f(-2) = 0 or equate imaginary parts	M1		
	$\beta = -2$ $\gamma = 2 - 3i$		2	correct answers no working and no check
	$p = -2, \ r = 2 - 51$	AI,AIF) 10	B1 only
1	Total	1	12	

Q	Solution	Marks	Total	Comments
8 (a)	$1, e^{\frac{2\pi i}{5}}, e^{\frac{4\pi i}{5}}, e^{\frac{-2\pi i}{5}}, e^{\frac{-4\pi i}{5}}$	B1	1	accept e ⁰
(b)	$\frac{z^{5}-1}{z-1} = z^{4} + z^{3} + z^{2} + z + 1$ $= \left(z - e^{\frac{2\pi i}{5}}\right) \left(z - e^{\frac{4\pi i}{5}}\right) \left(z - e^{\frac{-2\pi i}{5}}\right) \left(z - e^{\frac{-4\pi i}{5}}\right)$	B1 M1A1	3	B0 if assumed accept if $e^{\frac{6\pi i}{5}}$, $e^{\frac{8\pi i}{5}}$ used here
(c)	Correct grouping of linear factors	M1		
	$e^{\frac{2\pi i}{5}} + e^{\frac{-2\pi i}{5}} = 2\cos\frac{2\pi}{5}$	A1		clearly shown
	$\left(z^2 - 2\cos\frac{2\pi}{5}z + 1\right)\left(z^2 - 2\cos\frac{4\pi}{5}z + 1\right)$	A1		
	$\div z^2$ to give answer	A1	4	AG
(d)	Substitute into LHS to give $w^2 + w - 1$	B1		
	RHS $\left(w - 2\cos\frac{2\pi}{5}\right)\left(w - 2\cos\frac{4\pi}{5}\right)$	B1		
	Solve $w^2 + w - 1 = 0$	M1		
	$w = \frac{-1 \pm \sqrt{5}}{2}$	Al		
	$\cos\frac{2\pi}{5} = \frac{\sqrt{5}-1}{4}$	Al		
	with reasons for choice	E1	6	
	Total		14	
	TOTAL		75	

Version 1.0

General Certificate of Education (A-level) June 2012

Mathematics

MFP2

(Specification 6360)

Further Pure 2

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MFP2				
Q	Solution	Marks	Total	Comments
1(a)	Sketch of $y = \cosh x$	B1	1	approximately correct with minimum point above the <i>x</i> -axis, symmetrical about <i>y</i> -axis
(b)	Attempt to factorise $(2 \cosh x - 5)(2 \cosh x + 1) = 0$	M1		or complete square or use (correct unsimplified) formula
	$(3\cos x - 3)(2\cos x + 1) = 0$	Al		
	$\cosh x \neq -\frac{1}{2}$	E1		indicated or stated (not merely neglected)
	$x = \ln\left(\frac{5}{-1} + \sqrt{\frac{25}{-1}}\right)$	M1		evidence of use of formula. Must see –1
	$\begin{pmatrix} 3 & \sqrt{9} \end{pmatrix}$	A1F		ft incorrect factorisation
	$=\pm \ln 3$	A1F	6	A1 for \pm
	Alternative:			
	$3\left(\frac{e^x + e^{-x}}{2}\right) = 5$			
	$3e^{2x} - 10e^{x} + 3 = 0$	(M1)		
	$(3e^x - 1)(e^x - 3) = 0$	(A1F)		Correct factors
	$x = \ln\frac{1}{3} \text{ or } \ln 3$	(A1F)		for both
	NB if $\cosh x = \frac{e^x + e^{-x}}{2}$ used initially, M0 until quartic in e^x is factorised			M1 for e^x -3 is a factor A1 if correct M1 for $3e^x$ -1 is a factor A1 if correct A1 for $x=\pm \ln 3$ E1 for showing remaining quadratic has no real roots
	Total		7	

MFP2				
Q	Solution	Marks	Total	Comments
2(a)	Im (2, 3) Re			
(i)	Circle	B1		Convex loop
	Correct centre	B1		Some indication of position of centre
	Touching Im axis	B1	3	
(ii)	Straight line well to left of centre	B1		$\frac{1}{2}$ line through $(0, \frac{1}{2})$ B0
	through $(0, \frac{1}{2})$	B1		Point approximately between 0 and 1
	\perp to line joining (-2,1) and (2,0) NB 0/3 for line parallel to <i>x</i> -axis 0/3 for line joining the two points (-2, 1) and (2,0) 0/3 for line joining (0,0) to centre of circle	B1	3	
(b)	Minor arc indicated Total	B1F	1 7	ft incorrect position of line or circle

				a b
	Solution	Marks	Total	Comments
3(a)	Attempt to put LHS over common denominator	M1		
	$\frac{2^{r+1}(r+1) - 2^r(r+2)}{r}$	A1		any form
	(r+1)(r+2)			
	$=\frac{r(2^{\prime+1}-2^{\prime})}{(r+1)(r+2)}$			
	$= \frac{r2^r}{(r+1)(r+2)}$ must see $r2^{r+1} = 2r2^r$	A1	3	clearly shown as AG
(b)	$\frac{2^2}{2} - \frac{2}{2}$			
	$ \begin{array}{cccc} 3 & 2 \\ 2^3 & 2^2 \end{array} $			
	$\frac{1}{4} - \frac{1}{3}$			
	231 230	M1		3 rows indicated (PI)
	$\frac{2^{-1}}{32} - \frac{2^{-1}}{31}$			
	$S_{n} = \frac{2^{31}}{2^{n}} = 1 \text{ or } S_{n} = \frac{2^{n+1}}{2^{n+1}} = 1$	Δ1		
	$S_{30} - \frac{1}{32} - 101 S_n - \frac{1}{n+2} - 1$		2	C 10
	$=2^{20}-1$ Total	AI	<u> </u>	CAO
4(a)(i)	$\alpha + \beta + \gamma = 0$	B1	1	
		D 1	1	
(11)	$\alpha \beta \gamma = -q$	BI	1	
(b)	$\alpha^3 + p\alpha + q = 0$	M1		
	$\sum \alpha^3 + p \sum \alpha + 3q = 0$	m1		
	$\alpha^3 + \beta^3 + \gamma^3 = 3\alpha\beta\gamma$	A1	3	AG
	Alternative to (b) Use of			
	$(\sum \alpha)^3 = (\sum \alpha^3) + 6\alpha\beta\gamma + 3(\sum \alpha \sum \alpha\beta - 3\alpha\beta\gamma)$	(M1)		
	Substitution of $\sum \alpha = 0$	(m1)		
	Result	(A1)		
(c)(i)	$\beta = 4 - 7i, \ \gamma = -8$	B1,B1	2	
(ii)	Attempt at either p or q	M1		
	p = 1 a = 520	A1F	3	ft incorrect roots provided n and a are real
	<i>q</i> - 520	AII	5	It medifiet foots provided p and q are rear
(d)	Replace z by $\frac{1}{z}$ in cubic equation	M1 A1F		or $\sum \frac{1}{\alpha} = -\frac{p}{q}, \sum \frac{1}{\alpha\beta} = 0, \frac{1}{\alpha\beta\gamma} = -\frac{1}{q}$
	$520z^3 + z^2 + 1 = 0$ coefficients must be	A 1	2	It of incorrect p and/or q
	integers	AI	5	
	Total		13	

MFP2				
Q	Solution	Marks	Total	Comments
5(a)	$\frac{1}{x} = \cos y$ or $\frac{1}{y} = \cos x$	M 1		
	$y = \cos^{-1}\frac{1}{x}$ ie result	A1	2	CSO
(b)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\sec^{-1}x\right) = \frac{\mathrm{d}}{\mathrm{d}x}\left(\cos^{-1}\frac{1}{x}\right)$	M1		
	$= -\frac{1}{\sqrt{1 - \frac{1}{x^2}}}$ if in terms of <i>u</i> A0	A1		
	$\times \left(-\frac{1}{x^2}\right)$	A1		
	$=\frac{1}{\sqrt{x^4-x^2}}$	A1	4	clearly shown (AG)
	Alternative			
	$\cos y = \frac{1}{x}$			Use of sec $y = x$ M0
	$-\sin y \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1}{x^2}$	(M1) (A1)		
	Substitute for sin <i>y</i>	(A1)		
	Result	(A1)		
	Total		6	

MFP2				
Q	Solution	Marks	Total	Comments
6(a)	Use of $\cosh 2x = 2\cosh^2 x - 1$	M1		or $\cosh 4x = 2\cosh^2 2x - 1$
	$\mathbf{RHS} = \frac{1}{2}\cosh 2x + \frac{1}{2}\cosh^2 2x$	A1		
	$=\frac{1}{4}(1+2\cosh 2x+\cosh 4x)$	A1	3	
	If substituted for both $\cosh 4x$ and $\cosh 2x$			
	in LHS M1 only, until corrected			
	If RHS is put in terms of e^x			
	M1 for correct substitution			
	A1 for correct expansion			
	A1 for correct result			
				allow A1 for
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\cosh x \sinh x = \sinh 2x$	M1A1		$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 1 - 4\cosh^2 x + 4\cosh^4 x$
				Incorrect form for $\cosh^2 x$ in terms of
	Or			$\cos 2x$ MT only
	$y = \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} = \frac{e^{2x} + 2 + e^{-2x}}{4}$			
	$dy = 2e^{2x} - 2e^{x}$	(M1)		
	$\frac{dx}{dx} = \frac{dx}{4}$			
	$=\sinh 2x$	(A1)		
	$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 1 + \sinh^2 2x = \cosh^2 2x$	A1	3	AG
(c)	$S = 2\pi \int_{(0)}^{(\ln 2)} \cosh^2 x \cosh 2x \mathrm{d}x$	M1A1		allow even if limits missing
	$=2\pi \int_{0}^{\ln 2} \frac{1}{4} (1+2\cosh 2x + \cosh 4x) dx$	m1		
	$=\frac{2\pi}{4}\left[x+\frac{2\sinh 2x}{2}+\frac{\sinh 4x}{4}\right]$	A1		Integrated correctly
	Correct use of limits	m1		
	<i>a</i> =128 , <i>b</i> = 495	A1,A1	7	accept correct answers written down with no working. Only one A1 if 2π not used
	Total		13	

MFP2				
Q	Solution	Marks	Total	Comments
7(a)	Assume true for $n = k$			
	Then $\sum_{r=1}^{k+1} \frac{2r+1}{r^2(r+1)^2}$			
	$=1 - \frac{1}{(k+1)^2} + \frac{2k+3}{(k+1)^2(k+2)^2}$	M1A1		M1A0 if no LHS
	$=1 - \frac{1}{(k+1)^2} \left(1 - \frac{2k+3}{(k+2)^2}\right)$	m1		attempt to factorise or put over a common denominator
	$=1 - \frac{1}{(k+1)^2} \left(\frac{k^2 + 2k + 1}{(k+2)^2} \right)$	A1		any correct combination starting 1-
	$=1-\frac{1}{(k+2)^2}$	A1		
	True for $n = 1$ LHS = RHS = $\frac{3}{4}$	B1		
	Method of induction set out properly	E1	7	must score all 6 previous marks for this mark
(b)	$(n+1)^2 > 10^5$ or $\frac{1}{(n+1)^2} > 10^{-5}$	M1		Condone equals
	n + 1 > 316.2			
	<i>n</i> > 315.2			
	<i>n</i> = 316	A1	2	
	Total		9	
		•		1
---------------	---	--------------	-------	--
Q	Solution	Marks	Total	Comments
8 (a)	Use of $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$	M1		Stated or used
	$\cos(-n\theta) + i\sin(-n\theta) = \cos n\theta - i\sin n\theta$	A1		allow $\frac{2}{3}$ if this line is assumed
				allow if complex conjugate used
	$z^n + \frac{1}{z^n} = 2\cos n\theta$	A1	3	AG
(b)(i)	$z^8 + 4z^4 + 6 + 4z^{-4} + z^{-8}$	B1	1	allow in retrospect
(ii)	$z^2 + \frac{1}{z^2} = 2\cos 2\theta \text{used}$	B1		Can be implied from (b)(i)
	$(2\cos 2\theta)^4 = 2\cos 8\theta + 8\cos 4\theta + 6$	M1A1		M1 for RHS A1 for whole line
	$\cos^4 2\theta = \frac{1}{8}\cos 8\theta + \frac{1}{2}\cos 4\theta + \frac{3}{8}$	A1F	4	ft coefficients on previous line
	Alternative to (b)(ii)			
	$\cos^4 2\theta = \left(\frac{1+\cos 4\theta}{2}\right)^2$	(M1) (A1)		
	$\cos^2 4\theta = \frac{1}{2}(1 + \cos 8\theta)$	(B1)		
	Final result	(A1)		
(c)	$8\cos^4 2\theta = \cos 8\theta + 5 \rightarrow \cos 4\theta = \frac{1}{2}$	M1 A1F		ft provided simplifies to $\cos 4\theta = p$
	$k = \frac{1}{12}, \frac{5}{12}, \frac{7}{12}, \frac{11}{12}$	A1	3	CAO
(d)	$\int_{0}^{\frac{\pi}{2}} \cos^4 2\theta \mathrm{d}\theta =$			
	$\left[\frac{\sin 8\theta}{64} + \frac{\sin 4\theta}{8} + \frac{3}{8}\theta\right]_0^{\frac{\pi}{2}}$	M1 A1F		ie their $\cos^4 2\theta$
	$=\frac{3\pi}{16}$	A1	3	AG
	Total		14	
	TOTAL		75	

Version

General Certificate of Education (A-level) January 2013

Mathematics

MFP2

(Specification 6360)

Further Pure 2

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
– <i>x</i> EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MFP2				
Q	Solution	Marks	Total	Comments
1 (a)	$\cosh x = \frac{1}{2}(e^x + e^{-x})$			$or \ 12\cosh x = 6(e^x + e^{-x})$
	or $\sinh x = \frac{1}{2}(e^x - e^{-x})$	M1		or $4\sinh x = 2(e^x - e^{-x})$
	$12\cosh x - 4\sinh x =$			
	$6(e^{x} + e^{-x}) - 2(e^{x} - e^{-x})$			
	$12\cosh x - 4\sinh x = 4e^x + 8e^{-x}$	A1 cso	2	AG
(b)	$4e^{x} + 8e^{-x} = 33$			
	$\Rightarrow 4e^{2x} - 33e^x + 8 (=0)$	M1		attempt to multiply by e^x to form quadratic in e^x
	$\Rightarrow (e^x - 8)(4e^x - 1) (=0)$	m1		factorisation attempt (see below) or correct use of formula
	$\Rightarrow (e^{x} =) 8, (e^{x} =) \frac{1}{4}$	A1		correct roots
	$(x=) 3\ln 2$	A1		
	$(x=) -2\ln 2$	A1	5	
	Total		7	

MFP2 (cont)					
Q	Solution	Marks	Total	Comments	
2(a)	$ 4-4i = \sqrt{16+16} = \sqrt{32} = 4\sqrt{2}$	B1		verification that $\left -2+i+6-5i\right = 4\sqrt{2}$	
	$\arg(-2+2i) = \pi - \tan^{-1}(1) = \frac{3\pi}{4}$	B1	2	verification that arg $(z+i) = \frac{3\pi}{4}$	
	Im Re				
(b)	Circle	M1		freehand circle sketched	
	Centre at $-6+5i$	A1		clear from diagram or centre stated	
	Cutting Re axis but not cutting Im axis	A1			
	"Straight" line	M1		freehand line	
	Half line from $0 - i$	A1		not horizontal or vertical but end point at $0 - i$ must be clear from diagram/stated	
	gradient –1 (approx)	A1	6	making 45° to negative Re axis and	
				positive Im axis	
(c)	Calculation based on fact that L_2 passes through centre of L_1	M1		idea of vector $\begin{bmatrix} -4\\ 4 \end{bmatrix}$ from centre	
	Q represents $-10 + 9i$	A1	2	must write as a complex number	
	Total		10		

MFP2 (cont)				
Q	Solution	Marks	Total	Comments
3(a)	$\frac{1}{5r-2} - \frac{1}{5r+3} = \frac{5r+3-(5r-2)}{(5r-2)(5r+3)}$ $= \frac{5}{(5r-2)(5r+3)}$	M1	2	condone omission of brackets for M1 $A = 5$
(b)	(5r-2)(5r+3) Attempt to use method of differences	M1	2	at least 2 terms of correct form seen
	$k\left\{\frac{1}{3} - \frac{1}{5n+3}\right\}$	A1		correct cancellation leaving correct two fractions
	$k\left\{\frac{(5n+3)-3}{3(5n+3)}\right\}$	m1		attempt to write with common denominator
	$S_n = \frac{1}{5} \left\{ \frac{(5n+3)-3}{3(5n+3)} \right\} = \frac{n}{3(5n+3)}$	A1cso	4	AG $k = \frac{1}{5}$ used correctly throughout
(c)	$S_{\infty} = \frac{1}{15}$	B1	1	
	Total		7	

MFP	2 (cont)			1
Q	Solution	Marks	Total	Comments
4(a)(i)	$\alpha + \beta + \gamma = 5$ $\alpha \beta \gamma = 4$	B1 B1	2	
(ii)	$\alpha\beta\gamma^{2} + \alpha\beta^{2}\gamma + \alpha^{2}\beta\gamma = \alpha\beta\gamma(\alpha + \beta + \gamma)$ $= 5 \times 4 = 20$	M1 A1√	2	FT their results from (a)(i)
(b)(i)	If α, β, γ are all real then $\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2 \ge 0$			
	Hence α, β, γ cannot all be real	E1	1	argument must be sound
(ii)	$\alpha\beta + \beta\gamma + \gamma\alpha = k$	B1		$\sum \alpha \beta = k$ PI
	$ \left(\alpha\beta + \beta\gamma + \gamma\alpha \right)^2 $ = $\sum \alpha^2 \beta^2 + 2(\alpha\beta\gamma^2 + \alpha\beta^2\gamma + \alpha^2\beta\gamma) $	M1		correct identity for $\left(\sum \alpha \beta\right)^2$
	$k = \pm 6$	A1√` A1 cso	4	substituting their result from (a)(ii) must see $k=$
	Total		9	

MFP2 (cont)						
Q	Solution	Marks	Total	Comments		
5(a)	$x = \tanh y = \frac{e^{y} - e^{-y}}{e^{y} + e^{-y}}$ $xe^{y} + xe^{-y} = e^{y} - e^{-y}$	M1		$or xe^{2y} + x = e^{2y} - 1$		
	$\Rightarrow (x+1)e^{-y} = e^{y}(1-x)$ $\Rightarrow (x+1) = e^{2y}(1-x)$ $e^{2y} = \frac{1+x}{1-x} \Rightarrow y = \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)$	A1 A1cso	3	AG		
(b)	$y = \frac{1}{2}\ln(1+x) - \frac{1}{2}\ln(1-x)$	M1				
	$\frac{dy}{dx} = \frac{1}{2(1+x)} + \frac{1}{2(1-x)}$	A1				
	$=\frac{1-x+1+x}{2(1+x)(1-x)}=\frac{2}{2(1-x^2)}=\frac{1}{1-x^2}$	A1cso	3	AG		
				Alternative 1		
				$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} \times \frac{(1-x)}{(1+x)} \times \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1+x}{1-x}\right) \mathrm{M1}$		
				$\frac{dy}{dx} = \frac{1}{2} \times \frac{(1-x)}{(1+x)} \times \frac{(1-x) + (1+x)}{(1-x)^2} A1$		
				$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 - x^2} \qquad \text{A1 cso}$		
(c)	$\int 4 \tanh^{-1} x dx = 4x \tanh^{-1} x - \int \frac{4x}{1 - x^2} dx$	M1				
	$4x \tanh^{-1} x + 2\ln(1-x^2)$	A1				
	$\tanh^{-1}\frac{1}{2} = \frac{1}{2}\ln 3$	B1		must simplify logarithm to ln3		
	Value of integral = $\ln 3 + 2\ln \frac{3}{4}$	A1		any correct form		
	$\ln\!\left(rac{3^3}{2^4} ight)$	A1cso	5	all working must be correct		
	Tatel		11			
	Iotai		11			

MFP2	MFP2 (cont)					
Q	Solution	Marks	Total	Comments		
6(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 3t^2 \frac{\mathrm{d}y}{\mathrm{d}t} = 12t$	B1		both correct		
	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = 9t^4 + 144t^2$	M1		'their' $\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2$		
	$s = \int \sqrt{9t^4 + 144t^2} \left(\mathrm{d}t \right)$	A1		OE		
	$s = \int_0^3 3t \sqrt{t^2 + 16} \mathrm{d}t$	A1cso	4	<i>A</i> = 16		
(b)	$k(t^2 + A)^{\frac{3}{2}}$	M1		where k is a constant; ft their A		
	$(t^2+16)^{\frac{3}{2}}$	A1				
	$25^{\frac{3}{2}} - 16^{\frac{3}{2}}$	m1		F(3) - F(0)		
	= 61	A1 cso	4	AG		
	Total		8			

MPC1 (cont)					
Q	Solution	Marks	Total	Comments	
7(a)(i)	$p(k+1) - p(k) = k^{3} + (k+1)^{3} + (k+2)^{3}$ $- (k-1)^{3} - k^{3} - (k+1)^{3}$	M1			
	$= (k+2)^{3} - (k-1)^{3}$ $= k^{3} + 6k^{2} + 12k + 8 - (k^{2} - 3k^{2} + 3k - 1)$ $= 9k^{2} + 9k + 9 = 9(k^{2} + k + 1)$	A1		multiplied out & correct unsimplified	
	which is a multiple of 9 (since $k^2 + k + 1$ is an integer)	A1cso	3	correct algebra plus statement	
(ii)	p(1) = 1 + 8 = 9 $\Rightarrow p(1) \text{ is a multiple of } 9$	B1		result true for $n = 1$	
	$p(k+1) = p(k) + 9(k^{2} + k + 1)$ or $p(k+1) = p(k) + 9N$	M1		$p(k+1) = \dots$ and result from part (i) considered and mention of divisible by 9	
	Assume $p(k)$ is a multiple of 9 so $p(k) = 9M$, where <i>M</i> is integer $\Rightarrow p(k+1) = 9M + 9N = 9(M+N)$ $\Rightarrow p(k+1)$ is a multiple of 9	A1		must have word such as "assume" for A1 convincingly shown	
	Result true for $n = 1$ therefore true for n = 2, n = 3 etc by induction. (<i>or</i> p(n) is a multiple of 9 for all integers $n \ge 1$)	E1	4	must earn previous 3 marks before E1 is scored	
(b)	$p(n) = (n-1)^{3} + n^{3} + (n+1)^{3}$ $= 3n^{3} + 6n$	B1		need to see this OE as evidence or $3n(n^2 + 2)$	
	$p(n) = 3n(n^{2} + 2)$ & p(n) is a multiple of 9. Therefore $n(n^{2} + 2)$ is a multiple of 3 (for any positive integer n.)	E1	2	both of these required plus concluding statement	
	Total		9		

MFP2	MFP2 (cont)					
Q	Solution	Marks	Total	Comments		
8 (a)	<i>r</i> = 8	B1				
	$\tan^{-1} \pm \frac{4\sqrt{3}}{4}$ or $\pm \frac{\pi}{3}$ seen	M1		or $\frac{\pi}{6}$ marked as angle to Im axis with		
	$\Rightarrow \theta = \frac{2\pi}{3}$	A1	3	"vector" in second quadrant on Arg diag $-4 + 4\sqrt{3}i = 8 e^{i\frac{2\pi}{3}}$		
(b)(i)	modulus of each root $= 2$	B 1√		use of De Moivre –		
		M1		dividing argument by 3		
	$\Rightarrow \theta = -\frac{4\pi}{9}, \frac{2\pi}{9}, \frac{8\pi}{9}$	A2	4	A1 if 3 "correct" values not all in requested interval		
				$2e^{-i\frac{4\pi}{9}}, 2e^{i\frac{2\pi}{9}}, 2e^{i\frac{8\pi}{9}}$		
(ii)	Area = $3 \times \frac{1}{2} \times PO \times OR \times \sin \frac{2\pi}{3}$	M1		Correct expression for area of triangle <i>PQR</i>		
	$= 3 \times \frac{1}{2} \times 2 \times 2 \times \sin \frac{2\pi}{3}$	A1		correct values of lengths in formula		
	$= 3\sqrt{3}$	Alcso	3			
(c)	Sum of roots (of cubic) = 0 Sum of 3 roots including Im terms	E1 M1		must be stated explicitly in form $r(\cos\theta + i\sin\theta)$		
	$2\left(\cos\frac{(-)4\pi}{9} + \cos\frac{2\pi}{9} + \cos\frac{8\pi}{9}\right)$	A1		isolating real terms ; correct and with "2"		
	$e^{-i\frac{4\pi}{9}} = \cos\frac{4\pi}{9} - i\sin\frac{4\pi}{9}$ seen earlier			or $\cos \frac{-4\pi}{9} = \cos \frac{4\pi}{9}$ explicitly stated to earn final A1 mark		
	$\cos\frac{2\pi}{9} + \cos\frac{4\pi}{9} + \cos\frac{8\pi}{9} = 0$	A1 cso	4	AG		
	Total		14			
	TOTAL		75			
			-			

Version 1.0

General Certificate of Education (A-level) June 2013

Mathematics

MFP2

(Specification 6360)

Further Pure 2

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Q	Solution	Marks	Total	Comments
1(a)	Im 9 6 3 Re			
	Circle	M1		freehand circle
	Centre at 6i	A1		6 marked on Im axis as centre
	Radius 3 & cutting positive Im axis twice	A1	3	radius of 3 clearly indicated with circle in position shown
(b)(i)	(Max z is) 9	B1	1	
(ii)	Tangent from O to circle	M1		FT their circle position
	Angle of $\frac{\pi}{6}$ or $\frac{\pi}{3}$ <i>correctly</i> marked	A1		PI; condone degrees for first A1
	(Max arg z is) $\frac{2\pi}{3}$	A1cso	3	exactly this
	Total		7	

Q	Solution	Marks	Total	Comments
2(a)(i)	$\sinh x$ graph	M1		shape - curve through <i>O</i> , in 1st and 3 rd quadrants
	Gradient of $\sinh x > 0$ at origin and cosh x minimum at (0,1)	M1 A1	3	shape - curve all above x-axis
(ii)	cosh x = 0 has no solutions and $sinh x = -k$ has one solution (hence equation has exactly one solution)	E1	1	or $\cosh x > 0$ etc (since $y = -k$ cuts $y = \sinh x$ exactly once)
(b)	$\frac{dy}{dx} = 6\cosh x + 2\cosh x \sinh x$ (2)cosh x(3 + sinh x) = 0 therefore C has only one stationary point	M1 A1 E1√		one term correct all correct - may have $6\cosh x + \sinh 2x$ $\begin{bmatrix} \text{putting} = 0, \text{ factorising} \\ \text{and concluding statement (may be later)} \end{bmatrix}$
	$\Rightarrow \sinh x = -3$	m1		finding sinh x from "their" equation
	$\cosh^2 x = 10$			
	<i>y</i> (=−18+10) = −8	A1	5	answer must be integer so do not accept calculator approximation rounded to -8
	Total		9	

Q	Solution	Marks	Total	Comments
3	$n = 1$, $\frac{3+1}{3-1} = \frac{4}{2} = 2$			be convinced they have used $u_n = \frac{3n+1}{3n-1}$
	$(u_1 = 2 \text{ so formula is})$ true when $n = 1$	B1		
	Assume formula is true for $n = k$ (*)			
	$(u_{k+1} =) \frac{5\frac{3k+1}{3k-1} - 3}{3\frac{3k+1}{2k-1} - 1}$	M1		clear attempt at RHS of this formula
	3k-1	m1		clear attempt to remove "double fraction"
	$(u_{k+1} =) \frac{5(3k+1) - 3(3k-1)}{2(3k-1)}$	A1		$\frac{6k+8}{6k+4}$
	(k+1) $3(3k+1) - (3k-1)$			0. + 4
	$u_{k+1} = \frac{3k+4}{3k+2}$ or $u_{k+1} = \frac{3(k+1)+1}{3(k+1)-1}$	A1cso		must have " u_{k+1} = " on at least this line
	Hence formula is true for $n = k+1$ (**)			
	must have lines (*) & (**) and "Result true for $n = 1$ therefore true for n = 2, n = 3 etc by induction."	E1	6	must also have earned previous 5 marks before E1 is scored
	Total		6	
4(a)	$f(r) - f(r-1) =$ $r^{2}(2r^{2} - 1) - (r-1)^{2}(2(r-1)^{2} - 1)$ $= 2r^{4} - r^{2} - (r^{2} - 2r + 1)(2r^{2} - 4r + 1)$	M1		condone one slip here attempt to multiply out "their" $f(r-1)$
	$= 2r^4 - r^2 - (2r^4 - 8r^3 + 11r^2 - 6r + 1)$	A1		f(r) & f(r-1) expanded correctly condone correct unsimplified
	$=8r^{3}-12r^{2}+6r-1$			
	$=(2r-1)^{3}$	A1cso	3	AG
(b)	Attempt to use method of differences	M1		
	f(2n) - f(n)	m1		$(2n)^{2} \{2(2n^{2}) - 1\} - n^{2}(2n^{2} - 1)$
	$f(2n) - f(n) = 4n^{2}(8n^{2} - 1) - n^{2}(2n^{2} - 1)$	A1		
	$= 30n^{2} - 3n^{2}$ $= 3n^{2}(10n^{2} - 1)$	A1cso	4	AG be convinced
	Total		7	

Q	Solution	Marks	Total	Comments
5(a)(i)	$(\alpha\beta\gamma =)$ -37+36i	B1	1	
(ii)	$(\beta \gamma =)$ $(-2+3i)(1+2i) = -2+3i-4i-6$	M1		correct unsimplified but must simplify i ²
	$(-8 - i) \alpha = -37 + 36 i$			
	\Rightarrow (8 + i) α = 37 - 36 i	A1cso	2	AG be convinced
(iii)	$\Rightarrow \alpha = \frac{37 - 36i}{8 + i} \times \frac{8 - i}{8 - i}$	M1		
	$=\frac{296-37i-288i-36}{65}$	A1		correct unsimplified
	$=\frac{260-3251}{65}$			
	= 4 - 5i	Alcao	3	
				Alternative (8 + i) (m + n i) = 37 - 36 i 8m - n = 37; m + 8n = -36 M1 either $m = 4$ or $n = -5$ A1 $\alpha = 4 - 5i$ A1
(b)	$\alpha + \beta + \gamma = -p$			
	$-2+3i+1+2i+4-5i = 3$ $(\Rightarrow p =) -3$	B1	1	
(c)	$\alpha\beta + \beta\gamma + \gamma\alpha = q$			$q = \sum \alpha \beta$ and attempt to evaluate three
	(7 + 22i) + (-8 - i) + (14 + 3i) = q	M1		products FT "their" α
	q = 13 + 24i	A1cao	2	
	Total		9	

Q	Solution	Marks	Total	Comments
6(a)	$(5\cosh x - 3\sinh x)$			
	$=\frac{5}{2}(e^{x}+e^{-x})-\frac{3}{2}(e^{x}-e^{-x})$	M1		$\cosh x$ and $\sinh x$ correct in terms of e^x
	$= e^x + 4e^{-x}$	A1		may be seen as denominator
	$\frac{1}{5\cosh x - 3\sinh x} = \frac{e^x}{4 + e^{2x}}$	A1cso	3	** must have left hand-side ; $m = 4$
(b)	$u = e^x \Longrightarrow du = e^x dx$	M1		or $\frac{\mathrm{d}u}{\mathrm{d}x} = \mathrm{e}^x$
	$\Rightarrow \int \frac{1}{4+u^2} (\mathrm{d}u)$	A1√		FT "their" <i>m</i> from part(a) $\Rightarrow \int \frac{1}{m+u^2} du$
	$= \frac{1}{2} \tan^{-1} \frac{u}{2}$	A1√		FT "their" $\frac{1}{\sqrt{m}} \tan^{-1} \frac{u}{\sqrt{m}}$
	$x = 0 \Longrightarrow u = 1$ $x = \ln 2 \Longrightarrow u = 2$			
	$\frac{1}{2}\tan^{-1}1 - \frac{1}{2}\tan^{-1}\frac{1}{2}$	A1√		FT "their" $\frac{1}{\sqrt{m}} \left(\tan^{-1} \frac{2}{\sqrt{m}} - \tan^{-1} \frac{1}{\sqrt{m}} \right)$
	$= \frac{\pi}{8} - \frac{1}{2} \tan^{-1} \frac{1}{2}$	A1cso	5	AG
	Total		8	

Q	Solution	Marks	Total	Comments
7(a)(i)	$\frac{d}{du}\left(2u\sqrt{1+4u^2}\right) = \frac{8u^2}{\sqrt{1+4u^2}} + 2\sqrt{1+4u^2}$	M1		M1 for clear use of product rule (condone one error in one term)
		A1		correct unsimplified
	$\frac{\mathrm{d}}{\mathrm{d}u}(\sinh^{-1}2u) = \frac{2}{\sqrt{1+4u^2}}$	B1		
	$\frac{8u^2 + 2}{\sqrt{1 + 4u^2}} = \frac{2(1 + 4u^2)}{\sqrt{1 + 4u^2}} = 2\sqrt{1 + 4u^2}$			be convinced – must see this line OE
	$\frac{d}{du} \left(2u\sqrt{1+4u^2} + 4\sinh^{-1} 2u \right) = 4\sqrt{1+4u^2}$	A1cso	4	all working must be correct (not enough to just say $k = 4$)
(ii)	$\frac{1}{"their"k} \Big[2u\sqrt{1+4u^2} + \sinh^{-1} 2u \Big]_0^1$	M1		anti differentiation
	$=\frac{\sqrt{5}}{2}+\frac{1}{4}\sinh^{-1}2$	A1√	2	FT "their" k or even use of k
(b)(i)	$y = \frac{1}{2}\cos 4x$ and $\frac{dy}{dx} = A\sin 4x$			$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\sin 4x$
	substituted into $\int K y \left(1 + \left(\frac{dy}{dx} \right)^2 \right) (dx)$	M1		clear attempt to use formula for CSA
	$(S =) \int_{0}^{\frac{\pi}{8}} 2\pi \times \frac{1}{2} \cos 4x \sqrt{1 + 4\sin^2 4x} dx$ = printed answer (combining $2 \times \frac{1}{2}$)	Alcso	2	AG $\frac{dy}{dx} = -2\sin 4x$ and $2 \times \frac{1}{2}$ and dx must be seen to award A1cso
(ii)	$u = \sin 4x \Longrightarrow \mathrm{d}u = 4\cos 4x \mathrm{d}x$	M1		condone $du = B\cos 4x dx$ for M1
	$\left(S=\right) \frac{\pi}{4} \int_0^1 \sqrt{1+4u^2} \left(\mathrm{d}u\right)$	A1		condone limits seen later
	т	m1		use of their result from (a)(ii) correctly FT "their" <i>B</i>
	$(S =) \frac{\pi\sqrt{5}}{8} + \frac{\pi}{16} \sinh^{-1} 2$	A1cso	4	OE
	Total		12	

Q	Solution	Marks	Total	Comments
8(a)(i)	$\cos 4\theta + i \sin 4\theta = (\cos \theta + i \sin \theta)^4$	M1		De Moivre & attempt to expand RHS
	$\cos^4\theta + 4i\cos^3\theta\sin\theta + 6i^2\cos^2\theta\sin^2\theta$			
	$+4i^3\cos\theta\sin^3\theta+i^4\sin^4\theta$	A1		any correct expansion
		1		
	Equating "their" real parts	mı		or imaginary parts
	$\cos 4\theta = \cos^4 \theta - 6\cos^2 \theta \sin^2 \theta + \sin^4 \theta$	Al	_	AG be convinced
	$\sin 4\theta = 4\cos^3\theta\sin\theta - 4\cos\theta\sin^3\theta$	BI	5	correct
(ii)	$\tan 4\theta = \frac{\text{``their expression for '' } \sin 4\theta}{\text{``their expression for '' } \cos 4\theta}$	M1		
	Division by $\cos^4 \theta$	m1		
	$\tan 4\theta = \frac{4\tan \theta - 4\tan^2 \theta}{1 - (4\tan^2 \theta) + 4\tan^2 \theta}$	A1	3	AG be convinced
	$1 - 6 \tan^2 \theta + \tan^2 \theta$			
(b)	$(\tan 4\theta = 1 \Longrightarrow)$ $1 = \frac{4t - 4t^3}{1 - 6t^2 + t^4}$	M1		when $\theta = \frac{\pi}{16}$
	$1 - 6t^2 + t^4 = 4t - 4t^3$			
	$\rightarrow t^4 + 4t^3 - 6t^2 - 4t + 1 - 0$	A1		AG be convinced
	$ \begin{array}{c} \rightarrow i \\ - \pi $			
	$0 = \frac{16}{16}$ satisfies $\tan 40 = 1$			
	π.	E1		both statements required
	\Rightarrow tan — is root of quartic equation 16			
	(other meets are) to 5π to 9π 13π	B1	4	or equivalent tan expressions
	(other roots are) $\tan\frac{1}{16}$, $\tan\frac{1}{16}$, $\tan\frac{1}{16}$	DI	•	or equivalent an expressions
(c)	$\sum \alpha = -4$ and $\sum \alpha \beta = -6$	B1		watch for minus signs
	$\sum \alpha^2 = \left(\sum \alpha\right)^2 - 2\sum \alpha \beta$	M1		correct formula
	(=16+12) = 28	A1cso		
	$\tan \frac{9\pi}{2} = -\tan \frac{7\pi}{2}$ $\tan \frac{13\pi}{2} = -\tan \frac{3\pi}{2}$	P 1		ovplicitly soon
	16 16 16 16 16 16	DI		explicitly seen
	$\tan^2 \frac{\pi}{16} + \tan^2 \frac{3\pi}{16} + \tan^2 \frac{5\pi}{16} + \tan^2 \frac{7\pi}{16} = 28$	A1cso	5	AG must earn previous 4 marks
	Total		17	
	TOTAL		75	

A-LEVEL Mathematics

Further Pure 2 – MFP2 Mark scheme

6360 June 2014

Version/Stage: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Q	Solution	Mark	Total	Comment		
1 (a)	$r = 9$ $\theta = -\frac{\pi}{2}$	B1 B1		condone -1.57 here only		
			2	$-9i = 9e^{-i\frac{\pi}{2}}$		
(b)	$r = \sqrt{3}$	B1√ M1		follow through $(their r)^{\frac{1}{4}}$; accept $9^{\frac{1}{4}}$ etc		
	$\theta = -\frac{5\pi}{8}, -\frac{\pi}{8}, \frac{3\pi}{8}, \frac{7\pi}{8}$	A1		two angles correct in correct interval		
		A1		exactly four angles correct mod 2π		
	$\sqrt{3} e^{-\frac{i5\pi}{8}}, \sqrt{3} e^{-\frac{i\pi}{8}}, \sqrt{3} e^{-\frac{i3\pi}{8}}, \sqrt{3} e^{-\frac{i3\pi}{8}}$	A1	5	four correct roots in correct interval and in given form; accept $3^{\frac{1}{2}}$ for $\sqrt{3}$		
	Total		7			
1(a)	Accept correct values of <i>r</i> and θ for full marks without candidates actually writing $9e^{-i\frac{\pi}{2}}$. Do not accept angles outside the required interval. Example " $\theta = -\frac{\pi}{2}$ or $\theta = \frac{3\pi}{2}$ " scores B0					
(b)	Condone $r = 1.73$ for B1 only. Do not for Example $\theta = \frac{3\pi}{8}, \frac{7\pi}{8}, \frac{11\pi}{8}, \frac{15\pi}{8}$ scores M Example $\sqrt{3} e^{-\frac{i\pi}{8} + \frac{ik\pi}{2}}$ scores B1 M1 then $k =$ four roots are written in given form	bllow thro 1 A1 A1 = -1, 0, 1,	ugh a neg	gative value of r for B1 \checkmark . A A1 A1 with final A1 only earned when		

2(a)Straight lineM1M1Half line from 2 on Im axisA1not vertical or horizontalMaking approx. 30° to positive Im axis & 60° to negative Re axisA13(b)(i)Circle with centre on 'their' LM1Circle correct and touching Im $z = 2$ A12Image: An image: An i	ıl approx 2
Image: find the second problem of the second prob	ıl approx 2
Half line from 2 on Im axisAInot vertical or horizontalMaking approx. 30° to positive Im axis & 60° to negative Re axisAI3(b)(i)Circle with centre on 'their' LMICircle correct and touching Im $z = 2$ AI2Image: All state of the stat	approx 2
Making approx. 30° to positive Im axis & 60° to negative Re axisA13(b)(i)Circle with centre on 'their' LM1Circle correct and touching Im $z = 2$ A12Image: An equation of circle at a set of the correct and touching Im $z = 2$ A1	approx 2
(b)(i) Circle with centre on 'their' L M1 Circle correct and touching Im $z = 2$ A1 2 lowest point of circle at z	approx 2
Circle correct and touching $\text{Im } z = 2$ A1 2 lowest point of circle at a	approx 2
	* *
(b)(ii) $d = 3\tan\frac{\pi}{6}$ M1 any correct expression for	for distance
or $\frac{b-2}{a} = -\sqrt{3}$ for M1	1
$a = -\sqrt{3}$ A1 condone -1.73 or better	r
$b=5$ B1 3 centre is $-\sqrt{3}+5i$	
Total 8	
(a) The two A1 marks are independent.	
(b) (i) If candidate draws a horizontal line at Im $z = 2$ then award A1 if there is a clear intention touch this line. Allow freehand circle where centre is intended to be on "their" <i>L</i> for M1 but withhold A2 quadrant or drawing of circle is very poor. Award A0 if candidate has not scored full marks in (a).	1 for their circle to 1 if <i>L</i> is in wrong

Q	Solution	Mark	Total	Comment
3 (a)	$k^2 + 7k + 14$	B1	1	
(b)	When $n = 1$ LHS = $1 \times 2 \times 1 = 2$ RHS = $16 - 14 = 2$ Therefore true for $n = 1$	B1		
	Assume formula is true for $n=k$ (*) Add (k+1)th term (to both sides) $\sum_{k=1}^{k+1} r(r+1) \left(\frac{1}{2}\right)^{r-1}$	M1		(k+1)th term must be correct
	$\sum_{r=1}^{k} = 16 - (k^2 + 5k + 8)(\frac{1}{2})^{k-1}$	A1		A0 if only considering RHS
	$+(k+1)(k+2)(\frac{1}{2})^{n}$			
	$=16 - \left(\frac{1}{2}\right)^{k} \left(2k^{2} + 10k + 16 - k^{2} - 3k - 2\right)$ $=16 - \left(\frac{1}{2}\right)^{k} \left(k^{2} + 7k + 14\right)$	A1		
	$=16 - \left(\left(k+1 \right)^2 + 5\left(k+1 \right) + 8 \right) \left(\frac{1}{2} \right)^k$	A1		from part (a)
	Hence formula is true when $n = k+1$ (**) but true for $n = 1$ so true for $n = 2, 3,$ by induction (***)	E1	6	must have (*), (**) and (***) and must have earned previous 5 marks
	Total		7	
(b)	For B1 , accept " <i>n</i> =1 RHS=LHS=2" but mus	st mention	here or la	ater that the result is "true when $n=1$ "
	Alternative to (***) is "therefore true for all However, " true for all $n \ge 1$ " is incorrect a	positive i and scores	ntegers <i>n</i> E0	" etc
	May define $P(k)$ as the "proposition that the $P(k)$ is not defined then allow B1 for showing	formula i ng P(1) is	s true wh true but w	en $n = k$ " and earn full marks. However, if vithhold E1 mark.

Q	Solution	Mark	Total	Comment		
A (a) (i)		D1				
4 (a) (l)	$\alpha + \beta + \gamma = -2$ $\alpha\beta + \beta\gamma + \gamma\alpha = 3$	B1 B1	2			
			_			
(ii)	$\alpha^2 + \beta^2 + \gamma^2$					
	$= (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$	M1		correct formula		
	= 4 - 6 = -2	A1cso	2	AG be convinced; must see $4-6$		
				A0 if $\alpha + \beta + \gamma$ or $\alpha\beta + \beta\gamma + \gamma\alpha$ not correct		
(b) (i)	$\sum (\alpha + \beta)(\beta + \gamma) = \sum \alpha^2 + 3\sum \alpha\beta$	M1		or may use $12 + 4\sum \alpha + \sum \alpha \beta$		
	= -2 + 9	m1	2	ft their $\alpha\beta + \beta\gamma + \gamma\alpha$		
	= /	AI	3			
(ii)	$\alpha\beta\gamma - \Lambda$	R1		PI when earning m1 later		
(")	<i>upy</i> = +					
	$(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)$			or $(-2-\alpha)(-2-\beta)(-2-\gamma)$		
	$=\sum \alpha \sum \alpha \beta - \alpha \beta \gamma$	M1		$=-8-4\sum\alpha-2\sum\alpha\beta-\alpha\beta\gamma$		
	- 6 1	1		Σ Σ Σ Ω Ω		
	= -0 - 4		4	Sub their $\sum \alpha$, $\sum \alpha \beta \& \alpha \beta \gamma$		
	=-10	AI	4			
(c)	$\sim 10^{-10}$	R1		ar NMS coefficient of z^2 written as ± 4		
(0)	Sum of new roots = $2 \sum \alpha = -4$	DI		or must coefficient of 2 written as ++		
	$z^{3} \pm 4z^{2} + "their7"z - "their - 10" (=0)$	M1		correct sub of their results from part (b)		
	Now equation $z^3 + 4z^2 + 7z + 10 = 0$	A1	3			
	New equation $z + 4z + 7z + 10 = 0$		U	Alternative $y = -2 - z$ B1		
				$(-2 - y)^{3} + 2(-2 - y)^{2} + 3(-2 - y) - 4 = 0$		
				$M1$ $y^3 + 4y^2 + 7y + 10 = 0$ A1		
				NB candidate may do this first and then		
				obtain results for part (b)		
	Total		14			
(a)(ii)	Accept $(\sum \alpha)^2 = \sum \alpha^2 + 2\sum \alpha \beta$ etc for M1					
(b)(ii)	If B1 not earned, award m1 for using $\alpha\beta\gamma$ =	=±4.				
(c)	For M1 the signs of coefficients must be co However, for A1 the equation must be corre	rrect FT tl ct (any y	heir result ariable) in	is from (b) but condone missing "= 0" $= 0$ "		
		····				

Q	Solution	Mark	Total	Comment		
5(a)	$(e^{\theta} - e^{-\theta})^3 = e^{3\theta} - 3e^{\theta} + 3e^{-\theta} - e^{-3\theta}$ OE	B 1		correct expansion; terms need not be combined		
	$4\sinh^{3}\theta + 3\sinh\theta = \frac{4}{8}\left(e^{3\theta} - 3e^{\theta} + 3e^{-\theta} - e^{-3\theta}\right) + \frac{1}{2}\left(3e^{\theta} - 3e^{-\theta}\right)$	- M1		correct expression for $\sinh \theta$ and attempt to expand $(e^{\theta} - e^{-\theta})^3$		
	$=\frac{1}{2}\left(e^{3\theta}-e^{-3\theta}\right)=\sinh 3\theta$	A1	3	AG identity proved		
(b)	$16\sinh^{3}\theta + 12\sinh\theta - 3 = 0$ $\Rightarrow 4\sinh 3\theta - 3 = 0$	M1		attempt to use previous result		
	$\sinh 3\theta = \frac{1}{4}$ $(3\theta =)\ln\left(\frac{3}{4} + \sqrt{\frac{9}{16} + 1}\right)$	m1		correct ln form of sinh ⁻¹ for "their" $\frac{3}{4}$		
	$\theta = \frac{1}{3} \ln 2$	A1	4			
(c)	$x = \sinh \theta = \frac{1}{2} \left(2^{\frac{1}{3}} - 2^{-\frac{1}{3}} \right)$	M1		correctly substituting their expression for θ into sinh θ removing any ln terms		
	$2^{-\frac{2}{3}} - 2^{-\frac{4}{3}}$	A1	2			
	Total		9			
(a)	For M1, must attempt to expand $(e^{\theta} - e^{-\theta})^3$ with at least 3 terms and attempt to add expressions for two terms on LHS. For A1, must see both sides of identity connected with at least trailing equal signs.					
(b)	Withhold final A1 if answer is given as $x =$	$\frac{1}{2}\ln 2$.				
	Alternative: $2e^{3\theta} - 2e^{-3\theta} - 3 = 0 \rightarrow 2e^{6\theta} - 3$	$\frac{3}{e^{3\theta}-2}=0$) so $(e^{3\theta}$	$(-2)(2e^{3\theta}+1) = 0$		
	scores M1 for $e^{k\theta} = p$ (quite generous) A1	for $e^{3\theta} = 2$	2 (and per	rhaps $e^{3\theta} = -0.5$)		
	then m1 for correct ft from $e^{k\theta} = p \Longrightarrow k\theta = 0$	ln <i>p</i> and f	- inal A1 fo	or $\theta = \frac{1}{-\ln 2}$ and no other solutions		
	r ,	r		3		

Q	Solution	Mark	Total	Comment
6(a)(i)	$z^n = \cos n\theta + \mathrm{i}\sin n\theta$	M1		
	$z^{-n} = \cos(-n\theta) + i\sin(-n\theta)$			1 $\cos n\theta - i \sin n\theta$
	$= \cos n\theta - i\sin n\theta$	E1		or $\frac{1}{\cos n\theta + i\sin n\theta} \times \frac{1}{\cos n\theta - i\sin n\theta} = \dots$
				shown – not just stated
	$z^n - \frac{1}{z^n} = 2i\sin n\theta$	A1	3	AG
	Z		•	
(ii)	$\begin{pmatrix} n & 1 \end{pmatrix}$ 2 a			
(11)	$\left(z^n + \frac{z^n}{z^n}\right) = 2\cos n\theta$	B1	1	
(b)(i)	$\left(z-\frac{1}{2}\right)^{2}\left(z+\frac{1}{2}\right)^{2}=z^{4}-2+\frac{1}{2}$	D1	1	4 24
	$\begin{pmatrix} z \\ z \end{pmatrix} \begin{pmatrix} z + z \end{pmatrix} = z + z^4$	DI	1	or $z^{2} - 2 + z^{2}$
(ii)				
(11)	$(2i\sin\theta)^{2}(2\cos\theta)^{2} = 2\cos 4\theta - 2$	M1		using previous results
	$-16\sin^2\theta\cos^2\theta = 2\cos 4\theta - 2$	A 1050	2	
	$8\sin^2\theta\cos^2\theta = 1 - \cos 4\theta$	AICSU	2	
(0)	$r = 2 \sin \theta \rightarrow dr = 2 \cos \theta d\theta$	M1		dx
(0)	$x = 2 \sin \theta \implies dx = 2 \cos \theta d\theta$	IVII		$x = 2\sin\theta \Rightarrow \frac{1}{d\theta} = k\cos\theta$
	$\int x^2 \sqrt{4 - x^2} \mathrm{d}x = \int 16 \sin^2 \theta \cos^2 \theta \mathrm{d}\theta$	A1		
	j 5			
	$-\int (2-2\cos 4\theta) (d\theta)$	m1		correct or FT their (b)(ii) result
	$=\int (2 - 2\cos(\theta))(d\theta)$			
	$=2\theta-\frac{1}{2}\sin 4\theta$	B1 √		FT integrand of form $k(1 - \cos 4\theta)$
	$\begin{bmatrix} 1 & 1 & 2 \\ - & 1 & 2 \end{bmatrix} \begin{bmatrix} \pi & 1 & 2 \\ - & 2 \end{bmatrix} \begin{bmatrix} \pi & 1 \end{bmatrix}$			$r = 1 \rightarrow \rho = \pi$, $r = 2 \rightarrow \rho = \pi$.
	$= \left\lfloor \frac{\pi}{2} - \frac{\pi}{2} \sin 2\pi \right\rfloor - \left\lfloor \frac{\pi}{3} - \frac{\pi}{2} \sin \frac{\pi}{3} \right\rfloor$			$x = 1 \Longrightarrow 0 = \frac{-1}{6}, x = 2 \Longrightarrow 0 = \frac{-1}{2},$
	$=\frac{2\pi}{\sqrt{3}}$	A 1000	5	
	3 4	AICSU	5	
	Total		12	
(-)(!)				
(a)(I)	May score MI E0 AI if $z^{-n} = \cos n\theta - i \sin n$ Condena near use of brackets for M1 but no	$\partial \theta$ merely	y quoted a	and not proved.
	Condone poor use of brackets for wir but no	л 101 А 1 .		
(b)(ii)	For M1, must use $2i \sin \theta$ and "their" $2\cos \theta$	θ on LHS	but cond	one poor use of brackets etc when squaring.
(0)				
(0)	For Alcso , must simplify sin 1 correctly in Allow first A1 for missing $d\theta$ or incorrect	n terms of	π . 1/seen hu	t withhold final A1cso

Q	Solution	Mark	Total	Comment
7 (a)	$\frac{d}{dx}\left(\frac{1+x}{1-x}\right) = \frac{1-x+1+x}{(1-x)^2} = \frac{2}{(1-x)^2}$	B1		ACF
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1+u^2}$	M1		where $u = \frac{1+x}{1-x}$
	$\times \frac{2}{(1-x)^2}$	A1		correct unsimplified
	$=\frac{2}{(1-x)^2+(1+x)^2}=\frac{1}{1+x^2}$	A1	4	AG be convinced
(b)	either $\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}$ or $\int \frac{1}{1+x^2} dx = \tan^{-1} x (+c)$	B1		
	$\Rightarrow \tan^{-1}\left(\frac{1+x}{1-x}\right) = \tan^{-1}x + C$	M1		
	Putting $x = 0$ gives $C = \tan^{-1} 1 = \frac{\pi}{4}$			
	$\Rightarrow \tan^{-1}\left(\frac{1+x}{1-x}\right) - \tan^{-1}x = \frac{\pi}{4}$	A1	3	AG
	Total		7	
(a)	Alternative $\tan y = \frac{1+x}{1-x}$			
	$\sec^2 y \frac{d y}{d x}$ M1 $=\frac{2}{(1-x)^2}$ B1			
	$\left(1 + \left(\frac{1+x}{1-x}\right)^2\right) \frac{dy}{dx} A1 \qquad \text{with final } A1 \text{for proving given result}$			
(b)	Must see $\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$ within attempt	pt at part (b) to awa	urd B1
l				

Q	Solution	Mark	Total	Comment
0(1)	$\frac{1}{2}$ dy $-\frac{1}{2}$			
8(a)	$y = 2(x-1)^{\overline{2}} \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = (x-1)^{-\overline{2}}$	B 1		
	$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 1 + \frac{1}{x - 1}$	M1		ft their $\frac{dy}{dx}$
	$(s=)\int_{(2)}^{(9)}\sqrt{1+\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} (\mathrm{d}x) (=)$			$s = \int_{2}^{9} \sqrt{1 + \frac{1}{x - 1}} \mathrm{d}x$
	$\int_{2}^{9} \sqrt{\frac{x}{x-1}} \mathrm{d}x$	A1	3	(be convinced) AG (must have limits & dx on final line)
(b)(i)	$\cosh^{-1} 3 = \ln\left(3 + \sqrt{8}\right)$	M1		
	$(1+\sqrt{2})^2 = 3+2\sqrt{2} = 3+\sqrt{8}$			need to see this line OE
	$\cosh^{-1} 3 = \ln(1 + \sqrt{2})^2 = 2\ln(1 + \sqrt{2})$	A1	2	AG (be convinced)
(ii)	$x = \cosh^2 \theta \Rightarrow dx = 2\cosh\theta\sinh\thetad\theta$	M1		$\frac{\mathrm{d}x}{\mathrm{d}\theta} = k\cosh\theta\sinh\theta \mathbf{OE}$
	$(s =) \int \frac{\cosh \theta}{\sinh \theta} 2\cosh \theta \sinh \theta \mathrm{d}\theta$	A1		including $d\theta$ on this or later line
	$2\cosh^2\theta = 1 + \cosh 2\theta$ OE	B1		double angle formula or $\frac{1}{2} (e^{2\theta} + 2 + e^{-2\theta})$
	$(s=) \theta + \frac{1}{2}\sinh 2\theta$	A1		or $\left(\frac{1}{4}e^{2\theta} + \theta - \frac{1}{4}e^{-2\theta}\right)$
	$\cosh^{-1}3 + \frac{1}{2}\sinh(2\cosh^{-1}3)$	m1		correct use of correct limits
	$-\cosh^{-1}\sqrt{2}-\frac{1}{2}\sinh\left(2\cosh^{-1}\sqrt{2}\right)$			
	$(s = 2\ln(1 + \sqrt{2}) - \ln(1 + \sqrt{2}) + 6\sqrt{2} - \sqrt{2}$			must see this line OE
	$= 5\sqrt{2} + \ln\left(1 + \sqrt{2}\right)$	A1	6	partial AG (be convinced)
	Total		11	
	TOTAL		/5	
(b)(i)	SC1 for $\cosh\left(2\ln\left(1+\sqrt{2}\right)\right) = \frac{1}{2}\left(\left(1+\sqrt{2}\right)^2 + \left(1+\sqrt{2}\right)^2\right)$	$^{-2}\left(1-\frac{1}{2}\right) = \frac{1}{2}\left(3-\frac{1}{2}\right)$	$+2\sqrt{2}+3$	$(3-2\sqrt{2}) = 3 \Longrightarrow \cosh^{-1} 3 = 2\ln(1+\sqrt{2})$
(ii)	Another possible correct form for m1 is			
	$2\ln(1+\sqrt{2}) - \ln(1+\sqrt{2}) + \frac{1}{2}\sinh(1+\sqrt{2})$	$\left(4\ln\left(1+1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{$	$\left(\frac{1}{2}\right) - \frac{1}{2} \sin \left(\frac{1}{2}\right)$	$\ln\left(2\ln\left(1+\sqrt{2}\right)\right)$

A-LEVEL Mathematics

Further Pure 2 – MFP2 Mark scheme

6360 June 2015

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
_	accuracy
E	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.
Q1	Solution	Mark	Total	Comment	
(a)	r+1 = A(r+2) + B or $1 = \frac{A(r+2)}{r+1} + \frac{B}{r+1}$	M1		OE with factorials removed	
	either $A = 1$ or $B = -1$	A1		correctly obtained	
	$\frac{1}{(r+2)r!} = \frac{1}{(r+1)!} - \frac{1}{(r+2)!}$	A1	3	allow if seen in part (b)	
(b)	$\frac{1}{2!} - \frac{1}{3!} + \frac{1}{3!} - \frac{1}{4!} + \dots$ $\frac{1}{(n+1)!} - \frac{1}{(n+2)!}$	M1		use of their result from part (a) at least twice	
	Sum = $\frac{1}{2} - \frac{1}{(n+2)!}$	A1	2	must simplify 2! and must have scored at least M1 A1 in part (a)	
	Total		5		
(a)	Alternative Method Substituting two values of <i>r</i> to obtain two correct equations in <i>A</i> and <i>B</i> with factorials evaluated correctly $r = 0 \implies \frac{1}{2} = A + \frac{B}{2}$; $r = 1 \implies \frac{1}{3} = \frac{A}{2} + \frac{B}{6}$ earns M1 then A1, A1 as in main scheme				
	NMS $\frac{1}{(r+1)!} - \frac{1}{(r+2)!}$ earns 3 marks . However , using an <i>incorrect</i> expression resulting from poor algebra such as $1 = A(r+2)! + B(r+1)!$ with candidate often fluking $A = 1$, $B = -1$ scores M0 ie zero marks which you should denote as FIW These candidates can then score a maximum of M1 in part (b).				
(b)	ISW for incorrect simplification after correct	ct answer	seen		

Q2	Solution	Mark	Total	Comment	
(a)	y †				
	1				
	-1				
	Graph roughly correct through <i>Q</i>	M1		condone infinite gradient at Q for M1	
	orden rougen) correct monger o				
	Correct behaviour as $x \to \pm \infty$ & grad at <i>O</i>	A1			
	Asymptotes have equations $y = 1 & y = -1$	B 1	3	must state equations	
		21	C		
	$e^{x} - e^{-x}$			both correct ACF or correct squares of	
(b)	sect $x = \frac{1}{e^x + e^{-x}}$; tank $x = \frac{1}{e^x + e^{-x}}$	B 1		these expressions seen	
	$2^{2} + (e^{x} - e^{-x})^{2}$	M1		attended a southing their second terms	
	$(\operatorname{sech}^{-x} + \tanh^{-x} =) - \frac{(e^{x} + e^{-x})^{2}}{(e^{x} + e^{-x})^{2}}$	NI I		with correct single denominator	
	$(2^{2x} + 2 + 2^{-2x})$				
	$\operatorname{sech}^{2} x + \tanh^{2} x = \frac{e^{+2} + e^{+2}}{e^{2x} + 2 + e^{-2x}} = 1$	A1	3	AG valid proof convincingly shown to	
	6 7276			equal 1 including LHS seen	
(c)	$6(1 \tan^2 x) = 4 \pm \tanh x$	R1		correct use of identity from part (b)	
(0)	$O(1 - \tanh x) = 4 + \tanh x$	M1		forming quadratic in tanh r	
	$1 \qquad 2 \qquad (-0)$				
	$tanh x = \frac{1}{2}$, $tanh x = -\frac{2}{3}$	A1		obtained from correct quadratic	
	1, (1+k)				
	$\tanh x = k \Rightarrow x = \frac{-\ln(\frac{1-k}{1-k})$	A1F		FT a value of k provided $ k < 1$	
	$r = \frac{1}{\ln 3}$ $r = \frac{1}{\ln 1}$			both solutions correct and no others	
	$x = 2^{113}$, $x = 2^{11}5$	A1	5	any equivalent form involving ln	
	Total		11		
	10(4)	<u> </u>	••	1	
(a)	Actual asymptotes need not be shown, but if as	symptotes	are draw	n then curve should not cross them for A1.	
	Gradient should not be infinite at O for AI.				
(b)	Condone trailing equal signs up to final line pro	ovided "se	$ech^2 x + ta$	$nh^2 x =$ " is seen on previous line for A1	
	Denominator may be $e^{4x} + 4e^{2x} + 6 + e^{4x} + 4e^{-2x} + e^{-4x}$ etc for M1 and A1				
	$\left(e^{x}+e^{-x}\right)^{2}$				
	Accept sech ² x + tanh ² x = $\frac{(-1)^{2}}{(a^{x} + a^{-x})^{2}} = 1$ for A1				
	(e + e)	. 7			
	$(1 \sinh^2 x) 1 + (\frac{1}{2}(e^x - e^{-x}))^2$				

Accept
$$\operatorname{sech}^{2} x + \tanh^{2} x = \frac{\left(e^{x} + e^{-x}\right)^{2}}{\left(e^{x} + e^{-x}\right)^{2}} = 1$$
 for A1
Alternative: $\left(\frac{1}{\cosh^{2} x} + \frac{\sinh^{2} x}{\cosh^{2} x}\right) = \frac{1 + \left(\frac{1}{2}(e^{x} - e^{-x})\right)^{2}}{\left(\frac{1}{2}(e^{x} + e^{-x})\right)^{2}}$ scores B1 M1
and then A1 for $\operatorname{sech}^{2} x + \tanh^{2} x = \frac{\frac{1}{4}e^{2x} + \frac{1}{4}e^{-2x} + \frac{1}{2}}{\frac{1}{4}e^{2x} + \frac{1}{2} + \frac{1}{4}e^{-2x}} = 1$, (all like terms combined in any order).

Q3	Solution	Mark	Total	Comment
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 1 - \frac{1}{t^2}$ $\mathrm{d}y = 2$	B1		OE eg $\frac{t(2t) - (t^2 + 1)}{t^2}$ ACF
	$\frac{1}{\mathrm{d}t} = \frac{1}{t}$	B 1		
	$\left(\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = \right) 1 - \frac{2}{t^2} + \frac{1}{t^4} + \frac{4}{t^2}$	M1		squaring and adding their expressions and attempting to multiply out
	$1 + \frac{2}{t^2} + \frac{1}{t^4} \qquad = \left(1 + \frac{1}{t^2}\right)^2$	A1	4	AG be convinced
(b)	$2\pi \int_{1}^{2} \left(2\ln t\right) \left(1 + \frac{1}{t^2}\right) \mathrm{d}t$	B1		must have 2π , limits and dt
		M1		integration by parts - clear attempt to
				integrate $1 + \frac{1}{t^2}$ and differentiate $2 \ln t$
	$(2\pi)\left\{(2\ln t)\left(t-\frac{1}{t}\right)-\int\frac{2}{t}\left(t-\frac{1}{t}\right)(\mathrm{d}t)\right\}$	A1		correct (may omit limits, 2π and dt)
	$2\pi \left[\left(2\ln t\right) \left(t - \frac{1}{t}\right) - \left(2t + \frac{2}{t}\right) \right]$	A1		correct including 2π (no limits required)
	$= 2\pi(3\ln 2 - 5 + 4) = \pi(6\ln 2 - 2)$	A1	5	
	Total		9	
(b)	May have two separate integrals and attempt both using integration by parts for M1 Must see $(2\pi) \{ 2t \ln t - \int 2(dt) - (2t^{-1} \ln t - \int 2t^{-2}(dt)) \}$ (may omit limits, 2π and dt) for first A1 and $2\pi [(2t \ln t - 2t) - (2t^{-1} \ln t + 2t^{-1})]$ for second A1 Condone poor use of brackets if later recovered.			

Q4	Solution	Mark	Total	Comment
(a)	$f(k+1) = 2^{4k+7} + 3^{3k+4}$	M1		
	convincingly showing $2^{4k+7} = 16 \times 2^{4k+3}$ f (k+1) - 16 f (k)	E1		must see $16 = 2^4$ OE
	$= (81 - 16 \times 3) \times 3^{3k}$			
	$= 33 \times 3^{3k}$	A1	3	
(b)	f(1) = 209 therefore $f(1)$ is a multiple of 11	B1		$f(1) = 209 = 11 \times 19 \text{ or } 209 \div 11 = 19 \text{ etc}$ therefore true when $n=1$
	Assume $f(k)$ is a multiple of 11 (*)			
	$f(k+1) = 16f(k) + 33 \times 3^{3k}$	M1		attempt at $f(k+1) = \dots$ using their result
	-11M + 11N - 11(M + N)			from part (a) where M and N are integers
	Therefore $f(k+1)$ is a multiple of 11	A1		where <i>m</i> and <i>w</i> are integers
	Since $f(1)$ is multiple of 11 then $f(2)$, $f(3)$,	E1	4	must earn previous 3 marks and have (*)
	(or is a multiple of 11 for all integers $n \ge 1$)			before EI can be awarded
	Total		7	
(a)	It is possible to score M1 E0 A1			
(b)	Withhold E1 for conclusion such as "a multiple	e of 11 for	$rall n \ge 1$	" or poor notation, etc

Q5	Solution	Mark	Total	Comment
(a)	Im(z) 2 A $Re(z)$ B $+P$			Ignore the line <i>OP</i> drawn in full or circles drawn as part of construction for locus <i>L</i> .
	Straight line Through midpoint of <i>OP</i> , <i>P</i> correct Perpendicular to <i>OP</i> , <i>P</i> correct	M1 A1 A1	3	P represents 2 – 4i
(b)(i)	$(x-2)^{2} + (y+4)^{2} = x^{2} + y^{2}$	M1		
	2y - x + 5 = 0 A(5,0) & B(0,-2.5) $C\left(\frac{5}{2}, -\frac{5}{4}\right) \implies \text{complex num} = \frac{5}{2} - \frac{5}{4}i$	A1 A1 A1	4	may have $5 + 0i$ and $0 - 2.5i$
(ii)	<i>either</i> $\alpha = \frac{5}{2} - \frac{5}{4}i$ <i>or</i> $k = \frac{5\sqrt{5}}{4}$	M1		allow statement with correct value for centre or radius of circle
	$\left z - \frac{5}{2} + \frac{5}{4}i\right = \frac{5\sqrt{5}}{4}$	A1	2	must have exact surd form
	Total		9	
(a)	Withhold the final A1 (if 3 marks earned) if the straight line does not go beyond the $\text{Re}(z)$ axis and negative $\text{Im}(z)$ axis. The two A1 marks can be awarded independently.			
(b)(i)	Alternative 1: grad $OP = -2 \Rightarrow \text{grad } L = 0$ Alternative 2: substituting $z = x$ (or <i>a</i>) then Both $(x-2)^2 + 4^2 = x^2$ and $2^2 + (y+4)^2$ then A1, A1 as per scheme.	0.5 M1 ; z = iy (o) $= y^2$ M1	$y + 2 = \frac{1}{2}$ r ib) into y ; $4 - 4x$	(x-1) OE A1 then A1, A1 as per scheme given locus equation +16 = 0 and $4 + 8y + 16 = 0$ OE for A1

Q6	Solution	Mark	Total	Comment
(a)	$\sqrt{5+4x-x^2} + \frac{(x-2)\frac{1}{2}(4-2x)}{\sqrt{5+4x-x^2}}$	M1 A1		product rule (condone one error) correct unsimplified
	(+) $\frac{9 \times \frac{1}{3}}{\sqrt{1 - \left(\frac{x-2}{3}\right)^2}}$	B1		or $\frac{9}{\sqrt{3^2 - (x-2)^2}}$ correct unsimplified
	$\frac{5+4x-x^2}{\sqrt{5+4x-x^2}}$	A1		last two terms above combined correctly
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 2\sqrt{5 + 4x - x^2}$	A1cso	5	<i>k</i> = 2
(b)	$\frac{1}{k} \left\{ (x-2)\sqrt{5+4x-x^2} + 9\sin^{-1}\left(\frac{x-2}{3}\right) \right\}$	M1		ft "their" k
	$\frac{1}{"their" k} \left[\frac{3}{2} \sqrt{\frac{27}{4}} + 9\sin^{-1}\frac{1}{2} \right]$	m1		correct sub of limits (simplified at least this far)
	$=\frac{9}{8}\sqrt{3}+\frac{3}{4}\pi$	A1 cso	3	must have earned 5 marks in part(a) to be awarded this mark
	Total		8	
(a)	Second A1 ; may combine all three terms co	orrectly an	d obtain	$\frac{10 + 8x - 2x^2}{\sqrt{5 + 4x - x^2}}$

Q7	Solution	Mark	Total	Comment
(a)	$\alpha\beta + \beta\gamma + \gamma\alpha = 0$	B1		
	$\alpha\beta\gamma = -\frac{4}{27}$	B1	2	
	27	21	-	
(b)(i)	$\alpha\beta + \alpha\beta + \beta^2 = 0$; $\alpha\beta^2 = -\frac{4}{27}$	B1		May use γ instead of β throughout (b)(i)
		M1		Clear attempt to eliminate either α or β
	$\alpha^3 = -\frac{1}{27}$ or $\beta^3 = \frac{8}{27}$	A1		from "their" equations correct
	either $\alpha = -\frac{1}{3}$ or $\beta = \frac{2}{3}$	A1		
	$\alpha = -\frac{1}{2}, \ \beta = \frac{2}{2}, \ \gamma = \frac{2}{2}$	A 1	5	all 2 roots clearly stated
	3 3 3 3	AI	5	an 5 roots clearly stated
(ii)	$\left(\sum \alpha = 1 = -\frac{k}{27} \implies \right) k = -27$	B1	1	or substituting correct root into equation
(c)(i)	$\alpha^2 = -2i$	B1	•	
	$\alpha^3 = -2 - 2i$	BI	2	
(ii)	27(-2-2i) - 2ik + 4 = 0	M1		correctly substituting "their " $\alpha^2 = -2i$ and "their" $\alpha^3 = -2 - 2i$
	k = -27 + 25i	A1	2	
(d)	$y = \frac{1}{z} + 1 \Longrightarrow z = \frac{1}{y - 1}$	B1		may use any letter instead of y
	$\frac{27}{27} - \frac{12}{12} + 4 = 0$			
	$(y-1)^3 (y-1)^2 + 1 = 0$ 27-12(y-1)+4(y-1)^3 = 0	MI A1		removing denominators correctly
	27 - 12(y - 1) + 1(y - 1) = 0 $27 - 12y + 12 + 4(y^3 - 3y^2 + 3y - 1) = 0$	A1		correct and $(y-1)^3$ expanded correctly
	$4y^3 - 12y^2 + 35 = 0$	A1	5	
	Alternative: $\sum \alpha' = 3 + \frac{\alpha\beta + \beta\gamma + \gamma\alpha}{\alpha} = 3$	(D1)		
	$\frac{\alpha\beta\gamma}{2(\alpha\beta+\beta\gamma+\gamma\alpha)+\alpha+\beta+\gamma}$	(B1) (M1)		sum of new roots = 3 M1 for either of the other two formulae
	$\sum \alpha' \beta' = 3 + \frac{2(\alpha \beta + \beta \gamma + \gamma \alpha) + \alpha + \beta + \gamma}{\alpha \beta \gamma}$	(111)		correct in terms of $\alpha\beta\gamma$, $\alpha\beta + \beta\gamma + \gamma\alpha$ and
	$= 0$ $\square 1 \alpha\beta + \beta\gamma + \gamma\alpha + 1 + \alpha + \beta + \gamma$			$\alpha + \beta + \gamma$
	$\Pi = \Pi + \frac{\alpha\beta\gamma}{\alpha\beta\gamma}$			
	$=\frac{-35}{4}$	(A1)		
	$4y^3 - 12y^2 + 35 = 0$	(A1)	(5)	may use any letter instead of y
	Total		17	

Q8	Solution	Mark	Total	Comment	
(a)(i)	$(\omega^5 =) \cos 2\pi + i \sin 2\pi = 1$ So ω is a root of $z^5 = 1$	B1	1	must have conclusion plus verification that $\omega^5 = 1$	
(ii)	$\omega^2, \omega^3, \omega^4.$	B1	1	OE powers mod 5 (must not include 1)	
(b)(i) (ii)	$1 + \omega + \omega^{2} + \omega^{3} + \omega^{4} = \frac{1 - \omega^{5}}{1 - \omega} = 0$	B1	1	or clear statement that sum of roots (of $z^5 - 1 = 0$) is zero	
	$\left(\omega + \frac{1}{\omega}\right) + \left(\omega + \frac{1}{\omega}\right) - 1$ $= \omega^{2} + 2 + \frac{1}{\omega^{2}} + \omega + \frac{1}{\omega} - 1$ $= \frac{1 + \omega + \omega^{2} + \omega^{3} + \omega^{4}}{\omega^{2}} = 0$	M1 A1	2	correct expansion AG correctly shown to = 0 do not allow simply multiplying by ω^2	
(c)	$\frac{1}{\omega} = \cos\frac{2\pi}{5} - i\sin\frac{2\pi}{5}$	M1			
	$\Rightarrow \omega + \frac{1}{\omega} = 2\cos\frac{2\pi}{5}$	A1		SC1 if result merely stated	
	Solving quadratic $\left(\omega + \frac{1}{\omega} =\right) \frac{-1 \pm \sqrt{5}}{2}$	M1		must see both values	
	Rejecting negative root since $\cos \frac{2\pi}{5} > 0$ Hence $\cos \frac{2\pi}{5} = \frac{\sqrt{5} - 1}{4}$	A1	4	must see this line for final A1	
				It is possible to score SC1 M1 A1	
	Total		9		
(b)(ii)	i) May replace $\frac{1}{\omega^2}$ by ω^3 and $\frac{1}{\omega}$ by ω^4 and/or 1 by ω^5 in valid proof.				
	$\left(\omega + \frac{1}{\omega}\right)^2 - 2 + \left(\omega + \frac{1}{\omega}\right) + 1 = 0 \implies \left(\omega + \frac{1}{\omega}\right)^2 + \left(\omega + \frac{1}{\omega}\right) - 1 = 0 \text{ A1}$				